1、菱形的性质学案一:研读教材55-56二:思考探究1什么叫做平行四边形?什么叫矩形?平行四边形和矩形之间的关系是什么?2菱形定义:3菱形的性质:菱形的四条边都 。请证明菱形的两条对角线互相 ,并且每一条对角线平分 。请证明(三)菱形是 对称图形,对称轴为 。4、菱形的面积公式是什么?如何证明这个公式?(提示:四个全等的直角三角形。)三:例题精讲1已知如图菱形ABCD中,E、F分别是CB、CD上的点,且BE=DF(1)求证:AE=AF(2)若,点E、F分别为BC和CD中点,求证:为等边三角形2如图,菱形花坛ABCD的周长为80m, ABC60,沿着菱形的对角线修建了两条小路AC和BD,求两条小路的
2、长和花坛的面积(分别精确到0.01m和0.01 ) 当堂检测题1.菱形ABCD中,对角线AC、BD的长分别是6cm、8cm,那么菱形的边长是 2.如图1,在菱形ABCD中,AB 5,BCD 120,则对角线AC等于( )A20 B15 C10 D5BACD3.如图,在菱形ABCD中,A60,E、F分别是AB、AD的中点,若EF2,则菱形ABCD的边长是_4.已知菱形的一个内角为60,一条对角线的长为,则另一条对角线的长为_ 5如图,在菱形ABCD中,对角线AC、BD相交于点O,E为BC的中点,则下列式子中一定成立的是()AAC2OE BBC2OE CADOE DOBOE6如图AD是的角平分线, DEAC,DFAB,求证:四边形AEDF是菱形