1、中考数学专题复习之十一:图形折叠型题 【中考题特点】:折叠型问题是近年中考的热点问题,通常是把某个图形按照给定的条件折叠,通过折叠前后图形变换的相互关系来命题。折叠型问题立意新颖,变幻巧妙,对培养学生的识图能力及灵活运用数学知识解决问题的能力非常有效。下面我们一起来探究这种题型的解法。折叠的规律是,折叠部分的图形,折叠前后,关于折痕成轴对称,两图形全等。折叠图形中有相似三角形,常用勾股定理。【范例讲析】:例1:如图,折叠长方形的一边AD,点D落在BC边的点F处,已知AB=8cm,BC=10cm, 求EC的长。ABDFEC例2:如图,折叠矩形纸片ABCD,先折出折痕(对角线)BD,再折叠,使AD
2、落在对角线BD上,得折痕DG,若AB = 2,BC = 1,求AGGA1DABC例3:如图,矩形纸片ABCD中,AB=3cm,BC=5cm,现将A、C重合,使纸片折叠压平,设折痕为EF,求重叠部分AEF的面积。例4:已知如图,矩形ABCD中(图1),ADAB,O为对角线的交点,过O作一直线分别交于BC、AD于N、M。(1)求证:梯形ABNM的面积等于梯形CDMN的面积;(2)如图2,当MN满足什么条件时,将矩形ABCD以MN为折痕,翻折后能使C点恰好与A点重合?(只写出满足的条件,不要求证明)(3)在(2)的条件下,若翻折后和重叠部分的面积是重叠部分面积的一半,求BN:NC的值。 例5:如图,
3、矩形AOBC,以O为坐标原点,OB、OA分别在x轴、y轴上,点A坐标为(0,3),OAB=60,以AB为轴对折后,使C点落在点D处,求D点坐标。ACBDOxy【练习】:1、如图,在边长为2的菱形ABCD中,B=450,AE为BC边上的高,将ABE沿AE所在直线翻折得AB1E,求AB1E与四边形AECD重叠部分的面积。2、如图5、在矩形ABCD中,AB=6,CB=8,将矩形沿对角线BD折叠,点C落在C1处,再将所得图形对折,使点D与点A重合,设折痕为MN,求折痕MN的长。3、图是由五个边长都是1的正方形纸片拼接而成的,过点A1的直线分别与BC1、BE交于点M、N,且图被直线MN分成面积相等的上、下两部分 求的值; 求MB、NB的长; 图沿虚线折成一个无盖的正方体纸盒(图)后,求点M、N间的距离