收藏 分销(赏)

支持向量机程序.doc

上传人:xrp****65 文档编号:7669030 上传时间:2025-01-11 格式:DOC 页数:29 大小:138.50KB
下载 相关 举报
支持向量机程序.doc_第1页
第1页 / 共29页
支持向量机程序.doc_第2页
第2页 / 共29页
点击查看更多>>
资源描述
该工具箱包括了二种分类,二种回归,以及一种一类支持向量机算法 (1) Main_SVC_C.m --- C_SVC二类分类算法 (2) Main_SVC_Nu.m --- Nu_SVC二类分类算法 (3) Main_SVM_One_Class.m --- One-Class支持向量机 (4) Main_SVR_Epsilon.m --- Epsilon_SVR回归算法 (5) Main_SVR_Nu.m --- Nu_SVR回归算法 %-------------------------------------------------------% 3 使用 (1) 目录下以Main_开头的文件即是主程序文件,直接按快捷键F5运行即可 (2) 工具箱中所有程序均在Matlab6.5环境中调试通过,不能保证在Matlab其它版本正确运行 %-------------------------------------------------------% % % Support Vector Machine Matlab Toolbox 1.0 - C Support Vector Classification % Platform : Matlab6.5 / Matlab7.0 % Copyright : LU Zhen-bo, Navy Engineering University, WuHan, HuBei, P.R.China, 430033 % E-mail : luzhenbo@ % Homepage : % Reference : Chih-Chung Chang, Chih-Jen Lin. "LIBSVM: a Library for Support Vector Machines" % % Solve the quadratic programming problem - "quadprog.m" clc clear close all % ------------------------------------------------------------% % 定义核函数及相关参数 C = 200; % 拉格朗日乘子上界 ker = struct('type','linear'); %ker = struct('type','ploy','degree',3,'offset',1); %ker = struct('type','gauss','width',1); %ker = struct('type','tanh','gamma',1,'offset',0); % ker - 核参数(结构体变量) % the following fields: % type - linear : k(x,y) = x'*y % poly : k(x,y) = (x'*y+c)^d % gauss : k(x,y) = exp(-0.5*(norm(x-y)/s)^2) % tanh : k(x,y) = tanh(g*x'*y+c) % degree - Degree d of polynomial kernel (positive scalar). % offset - Offset c of polynomial and tanh kernel (scalar, negative for tanh). % width - Width s of Gauss kernel (positive scalar). % gamma - Slope g of the tanh kernel (positive scalar). % ------------------------------------------------------------% % 构造两类训练样本 n = 50; randn('state',3); x1 = randn(n,2); y1 = ones(n,1); x2 = 5+randn(n,2); y2 = -ones(n,1); figure(1); plot(x1(:,1),x1(:,2),'bx',x2(:,1),x2(:,2),'k.'); hold on; X = [x1;x2]; % 训练样本,n×d的矩阵,n为样本个数,d为样本维数 Y = [y1;y2]; % 训练目标,n×1的矩阵,n为样本个数,值为+1或-1 % ------------------------------------------------------------% % 训练支持向量机 tic svm = C_SVC_Train(X,Y,C,ker); t_train = toc % svm 支持向量机(结构体变量) % the following fields: % ker - 核参数 % x - 训练样本 % y - 训练目标; % a - 拉格朗日乘子 % ------------------------------------------------------------% % 寻找支持向量 a = svm.a; epsilon = 1e-8; % 如果小于此值则认为是0 i_sv = find(a>epsilon); % 支持向量下标 plot(X(i_sv,1),X(i_sv,2),'ro'); % ------------------------------------------------------------% % 测试输出 [x1,x2] = meshgrid(-2:0.05:7,-2:0.05:7); [rows,cols] = size(x1); nt = rows*cols; % 测试样本数 Xt = [reshape(x1,nt,1),reshape(x2,nt,1)]; tic Yd = C_SVC_Sim(svm,Xt); % 测试输出 t_sim = toc Yd = reshape(Yd,rows,cols); contour(x1,x2,Yd,[0 0],'m'); % 分类面 hold off; function [K] = CalcKernel(ker,x,y) % Calculate kernel function. % % x: 输入样本,n1×d的矩阵,n1为样本个数,d为样本维数 % y: 输入样本,n2×d的矩阵,n2为样本个数,d为样本维数 % % ker 核参数(结构体变量) % the following fields: % type - linear : k(x,y) = x'*y % poly : k(x,y) = (x'*y+c)^d % gauss : k(x,y) = exp(-0.5*(norm(x-y)/s)^2) % tanh : k(x,y) = tanh(g*x'*y+c) % degree - Degree d of polynomial kernel (positive scalar). % offset - Offset c of polynomial and tanh kernel (scalar, negative for tanh). % width - Width s of Gauss kernel (positive scalar). % gamma - Slope g of the tanh kernel (positive scalar). % % ker = struct('type','linear'); % ker = struct('type','ploy','degree',d,'offset',c); % ker = struct('type','gauss','width',s); % ker = struct('type','tanh','gamma',g,'offset',c); % % K: 输出核参数,n1×n2的矩阵 %-------------------------------------------------------------% % 转成列向量 x = x'; y = y'; %-------------------------------------------------------------% switch ker.type case 'linear' K = x'*y; case 'ploy' d = ker.degree; c = ker.offset; K = (x'*y+c).^d; case 'gauss' s = ker.width; rows = size(x,2); cols = size(y,2); tmp = zeros(rows,cols); for i = 1:rows for j = 1:cols tmp(i,j) = norm(x(:,i)-y(:,j)); end end K = exp(-0.5*(tmp/s).^2); case 'tanh' g = ker.gamma; c = ker.offset; K = tanh(g*x'*y+c); otherwise K = 0; end function svm = C_SVC_Train(X,Y,C,ker) % 输入参数: % X 训练样本,n×d的矩阵,n为样本个数,d为样本维数 % Y 训练目标,n×1的矩阵,n为样本个数,值为+1或-1 % C 拉格朗日乘子上界 % ker 核参数(结构体变量) % the following fields: % type - linear : k(x,y) = x'*y % poly : k(x,y) = (x'*y+c)^d % gauss : k(x,y) = exp(-0.5*(norm(x-y)/s)^2) % tanh : k(x,y) = tanh(g*x'*y+c) % degree - Degree d of polynomial kernel (positive scalar). % offset - Offset c of polynomial and tanh kernel (scalar, negative for tanh). % width - Width s of Gauss kernel (positive scalar). % gamma - Slope g of the tanh kernel (positive scalar). % 输出参数: % svm 支持向量机(结构体变量) % the following fields: % ker - 核参数 % x - 训练样本 % y - 训练目标; % a - 拉格朗日乘子 % ------------------------------------------------------------% % 解二次优化 n = length(Y); H = (Y*Y').*Calckernel(ker,X,X); f = -ones(n,1); A = []; b = []; Aeq = Y'; beq = 0; lb = zeros(n,1); ub = C*ones(n,1); a0 = zeros(n,1); options = optimset; options.LargeScale = 'off'; options.Display = 'off'; [a,fval,eXitflag,output,lambda] = quadprog(H,f,A,b,Aeq,beq,lb,ub,a0,options); eXitflag % ------------------------------------------------------------% % 输出 svm svm.ker = ker; svm.x = X; svm.y = Y; svm.a = a; function Yd = C_SVC_Sim(svm,Xt) % 输入参数: % svm 支持向量机(结构体变量) % the following fields: % ker - 核参数 % type - linear : k(x,y) = x'*y % poly : k(x,y) = (x'*y+c)^d % gauss : k(x,y) = exp(-0.5*(norm(x-y)/s)^2) % tanh : k(x,y) = tanh(g*x'*y+c) % degree - Degree d of polynomial kernel (positive scalar). % offset - Offset c of polynomial and tanh kernel (scalar, negative for tanh). % width - Width s of Gauss kernel (positive scalar). % gamma - Slope g of the tanh kernel (positive scalar). % x - 训练样本 % y - 训练目标; % a - 拉格朗日乘子 % % Xt 测试样本,n×d的矩阵,n为样本个数,d为样本维数 % 输出参数: % Yd 测试输出,n×1的矩阵,n为样本个数,值为+1或-1 % ------------------------------------------------------------% ker = svm.ker; X = svm.x; Y = svm.y; a = svm.a; % ------------------------------------------------------------% % 求 b epsilon = 1e-8; % 如果小于此值则认为是0 i_sv = find(a>epsilon); % 支持向量下标 tmp = (Y.*a)'*Calckernel(ker,X,X(i_sv,); % 行向量 b = 1./Y(i_sv)-tmp'; b = mean(b); % ------------------------------------------------------------% % 测试输出 nt = size(Xt,1); % 测试样本数 tmp = (Y.*a)'*Calckernel(ker,X,Xt); Yd = sign(tmp+b)'; % % Support Vector Machine Matlab Toolbox 1.0 - Nu Support Vector Classification % Platform : Matlab6.5 / Matlab7.0 % Copyright : LU Zhen-bo, Navy Engineering University, WuHan, HuBei, P.R.China, 430033 % E-mail : luzhenbo@ % Homepage : % Reference : Chih-Chung Chang, Chih-Jen Lin. "LIBSVM: a Library for Support Vector Machines" % % Solve the quadratic programming problem - "quadprog.m" clc clear close all % ------------------------------------------------------------% % 定义核函数及相关参数 nu = 0.2; % nu -> (0,1] 在支持向量数与错分样本数之间进行折衷 ker = struct('type','linear'); %ker = struct('type','ploy','degree',3,'offset',1); %ker = struct('type','gauss','width',1); %ker = struct('type','tanh','gamma',1,'offset',0); % ker - 核参数(结构体变量) % the following fields: % type - linear : k(x,y) = x'*y % poly : k(x,y) = (x'*y+c)^d % gauss : k(x,y) = exp(-0.5*(norm(x-y)/s)^2) % tanh : k(x,y) = tanh(g*x'*y+c) % degree - Degree d of polynomial kernel (positive scalar). % offset - Offset c of polynomial and tanh kernel (scalar, negative for tanh). % width - Width s of Gauss kernel (positive scalar). % gamma - Slope g of the tanh kernel (positive scalar). % ------------------------------------------------------------% % 构造两类训练样本 n = 50; randn('state',3); x1 = randn(n,2); y1 = ones(n,1); x2 = 5+randn(n,2); y2 = -ones(n,1); figure(2); plot(x1(:,1),x1(:,2),'bx',x2(:,1),x2(:,2),'k.'); hold on; X = [x1;x2]; % 训练样本,n×d的矩阵,n为样本个数,d为样本维数 Y = [y1;y2]; % 训练目标,n×1的矩阵,n为样本个数,值为+1或-1 % ------------------------------------------------------------% % 训练支持向量机 tic svm = Nu_SVC_Train(X,Y,nu,ker); t_train = toc % svm 支持向量机(结构体变量) % the following fields: % ker - 核参数 % x - 训练样本 % y - 训练目标; % a - 拉格朗日乘子 % ------------------------------------------------------------% % 寻找支持向量 a = svm.a; epsilon = 1e-8; % 如果小于此值则认为是0 i_sv = find(a>epsilon); % 支持向量下标 plot(X(i_sv,1),X(i_sv,2),'ro'); % ------------------------------------------------------------% % 测试输出 [x1,x2] = meshgrid(-2:0.05:7,-2:0.05:7); [rows,cols] = size(x1); nt = rows*cols; % 测试样本数 Xt = [reshape(x1,nt,1),reshape(x2,nt,1)]; tic Yd = Nu_SVC_Sim(svm,Xt); % 测试输出 t_sim = toc Yd = reshape(Yd,rows,cols); contour(x1,x2,Yd,[0 0],'m'); % 分类面 hold off; function [K] = CalcKernel(ker,x,y) % Calculate kernel function. % % x: 输入样本,n1×d的矩阵,n1为样本个数,d为样本维数 % y: 输入样本,n2×d的矩阵,n2为样本个数,d为样本维数 % % ker 核参数(结构体变量) % the following fields: % type - linear : k(x,y) = x'*y % poly : k(x,y) = (x'*y+c)^d % gauss : k(x,y) = exp(-0.5*(norm(x-y)/s)^2) % tanh : k(x,y) = tanh(g*x'*y+c) % degree - Degree d of polynomial kernel (positive scalar). % offset - Offset c of polynomial and tanh kernel (scalar, negative for tanh). % width - Width s of Gauss kernel (positive scalar). % gamma - Slope g of the tanh kernel (positive scalar). % % ker = struct('type','linear'); % ker = struct('type','ploy','degree',d,'offset',c); % ker = struct('type','gauss','width',s); % ker = struct('type','tanh','gamma',g,'offset',c); % % K: 输出核参数,n1×n2的矩阵 %-------------------------------------------------------------% % 转成列向量 x = x'; y = y'; %-------------------------------------------------------------% switch ker.type case 'linear' K = x'*y; case 'ploy' d = ker.degree; c = ker.offset; K = (x'*y+c).^d; case 'gauss' s = ker.width; rows = size(x,2); cols = size(y,2); tmp = zeros(rows,cols); for i = 1:rows for j = 1:cols tmp(i,j) = norm(x(:,i)-y(:,j)); end end K = exp(-0.5*(tmp/s).^2); case 'tanh' g = ker.gamma; c = ker.offset; K = tanh(g*x'*y+c); otherwise K = 0; end function svm = Nu_SVC_Train(X,Y,nu,ker) % 输入参数: % X 训练样本,n×d的矩阵,n为样本个数,d为样本维数 % Y 训练目标,n×1的矩阵,n为样本个数,值为+1或-1 % nu 控制参数 % ker 核参数(结构体变量) % the following fields: % type - linear : k(x,y) = x'*y % poly : k(x,y) = (x'*y+c)^d % gauss : k(x,y) = exp(-0.5*(norm(x-y)/s)^2) % tanh : k(x,y) = tanh(g*x'*y+c) % degree - Degree d of polynomial kernel (positive scalar). % offset - Offset c of polynomial and tanh kernel (scalar, negative for tanh). % width - Width s of Gauss kernel (positive scalar). % gamma - Slope g of the tanh kernel (positive scalar). % 输出参数: % svm 支持向量机(结构体变量) % the following fields: % ker - 核参数 % x - 训练样本 % y - 训练目标; % a - 拉格朗日乘子 % ------------------------------------------------------------% % 解二次优化 n = length(Y); H = (Y*Y').*Calckernel(ker,X,X); f = zeros(n,1); A = -ones(1,n); b = -nu; Aeq = Y'; beq = 0; lb = zeros(n,1); ub = ones(n,1)/n; a0 = zeros(n,1); options = optimset; options.LargeScale = 'off'; options.Display = 'off'; [a,fval,eXitflag,output,lambda] = quadprog(H,f,A,b,Aeq,beq,lb,ub,a0,options); eXitflag % ------------------------------------------------------------% % 输出 svm svm.ker = ker; svm.x = X; svm.y = Y; svm.a = a; function Yd = Nu_SVC_Sim(svm,Xt) % 输入参数: % svm 支持向量机(结构体变量) % the following fields: % ker - 核参数 % type - linear : k(x,y) = x'*y % poly : k(x,y) = (x'*y+c)^d % gauss : k(x,y) = exp(-0.5*(norm(x-y)/s)^2) % tanh : k(x,y) = tanh(g*x'*y+c) % degree - Degree d of polynomial kernel (positive scalar). % offset - Offset c of polynomial and tanh kernel (scalar, negative for tanh). % width - Width s of Gauss kernel (positive scalar). % gamma - Slope g of the tanh kernel (positive scalar). % x - 训练样本 % y - 训练目标; % a - 拉格朗日乘子 % % Xt 测试样本,n×d的矩阵,n为样本个数,d为样本维数 % 输出参数: % Yd 测试输出,n×1的矩阵,n为样本个数,值为+1或-1 % ------------------------------------------------------------% ker = svm.ker; X = svm.x; Y = svm.y; a = svm.a; % ------------------------------------------------------------% % 求 b epsilon = 1e-8; % 如果小于此值则认为是0 i_sv = find(a>epsilon); % 支持向量下标 tmp = (Y.*a)'*Calckernel(ker,X,X(i_sv,); % 行向量 b = 1./Y(i_sv)-tmp'; b = mean(b); % ------------------------------------------------------------% % 测试输出 nt = size(Xt,1); % 测试样本数 tmp = (Y.*a)'*Calckernel(ker,X,Xt); Yd = sign(tmp+b)'; % Support Vector Machine Matlab Toolbox 1.0 - One-Class Support Vector Machine % Platform : Matlab6.5 / Matlab7.0 % Copyright : LU Zhen-bo, Navy Engineering University, WuHan, HuBei, P.R.China, 430033 % E-mail : luzhenbo@ % Homepage : % Reference : Chih-Chung Chang, Chih-Jen Lin. "LIBSVM: a Library for Support Vector Machines" % % Solve the quadratic programming problem - "quadprog.m" clc clear close all % ------------------------------------------------------------% % 定义核函数及相关参数 nu = 0.15; % nu -> [0,1] 在支持向量数与错分样本数之间进行折衷 % 支持向量机的 nu 参数(取值越小,异常点就越少) ker = struct('type','linear'); %ker = struct('type','ploy','degree',3,'offset',1); %ker = struct('type','gauss','width',200); %ker = struct('type','tanh','gamma',1,'offset',0); % ker - 核参数(结构体变量) % the following fields: % type - linear : k(x,y) = x'*y % poly : k(x,y) = (x'*y+c)^d % gauss : k(x,y) = exp(-0.5*(norm(x-y)/s)^2) % tanh : k(x,y) = tanh(g*x'*y+c) % degree - Degree d of polynomial kernel (positive scalar). % offset - Offset c of polynomial and tanh kernel (scalar, negative for tanh). % width - Width s of Gauss kernel (positive scalar). % gamma - Slope g of the tanh kernel (positive scalar). % ------------------------------------------------------------% % 构造一类训练样本 n = 100 randn('state',1); x1 = randn(floor(n*0.95),2); x2 = 4+randn(ceil(n*0.05),2); X = [x1;x2]; % 训练样本,n×d的矩阵,n为样本个数,d为样本维数 figure(3); plot(x1(:,1),x1(:,2),'bx',x2(:,1),x2(:,2),'k.'); axis([-5 8 -5 8]); hold on; % ------------------------------------------------------------% % 训练支持向量机 tic svm = One_Class_SVM_Train(X,[],nu,ker); t_train = toc % svm 支持向量机(结构体变量) % the following fields: % ker - 核参数 % x - 训练样本 % y - 训练目标; % a - 拉格朗日乘子 % ------------------------------------------------------------% % 寻找支持向量 a = svm.a; epsilon = 1e-10; % 如果小于此值则认为是0 i_sv = find(a>epsilon); % 支持向量下标 plot(X(i_sv,1),X(i_sv,2),'ro'); % ------------------------------------------------------------% % 测试输出 [x1,x2] = meshgrid(-4:0.05:6,-4:0.05:6); [rows,cols] = size(x1); nt = rows*cols; % 测试样本数 Xt = [reshape(x1,nt,1),reshape(x2,nt,1)]; tic Yd = One_Class_SVM_Sim(svm,Xt); % 测试输出 t_sim = toc Yd = reshape(Yd,rows,cols); contour(x1,x2,Yd,[0 0],'m'); % 分类面 hold off; function [K] = CalcKernel(ker,x,y) % Calculate kernel function. % % x: 输入样本,n1×d的矩阵,n1为样本个数,d为样本维数 % y: 输入样本,n2×d的矩阵,n2为样本个数,d为样本维数 % % ker 核参数(结构体变量) % the following fields: % type -
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传
相似文档                                   自信AI助手自信AI助手

当前位置:首页 > 教育专区 > 其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服