资源描述
1.四棱锥中,底面为平行四边形,侧面底面.已知
,,,.
(Ⅰ)证明;
(Ⅱ)求直线与平面所成角的大小.
A
B
C
D
2.如图,正三棱柱的所有棱长都为
,为中点.
(Ⅰ)求证:平面;
(Ⅱ)求二面角的大小;
(Ⅲ)求点到平面的距离.
3.如图,在三棱锥中,侧面与侧面均为等边三角形,,为 中点.
(Ⅰ)证明:平面;
(Ⅱ)求二面角的余弦值.
3.如图2,分别是矩形的边的中点,是上的一点,将,
分别沿翻折成,,并连结,使得平面平
面,,且.连结,如图3.
A
E
B
C
F
D
G
图2 图3
(I)证明:平面平面;
(II)当,,时,求直线和平面所成的角.
□1.解法一:(Ⅰ)作,垂足为,连结,由侧面底面,得底面.
因为,所以,
又,故为等腰直角三角形,,
D
B
C
A
S
由三垂线定理,得.
(Ⅱ)由(Ⅰ)知,依题设,
故,由,,,得
,.
的面积.
连结,得的面积
设到平面的距离为,由于,得
,
解得.
设与平面所成角为,则.
所以,直线与平面所成的我为.
解法二:
(Ⅰ)作,垂足为,连结,由侧面底面,得平面.
D
B
C
A
S
因为,所以.
又,为等腰直角三角形,.
如图,以为坐标原点,为轴正向,建立直角坐标系,
,,,,,
,,所以.
(Ⅱ)取中点,,
连结,取中点,连结,.
,,.
,,与平面内两条相交直线,垂直.
所以平面,与的夹角记为,与平面所成的角记为,则与互余.
,.
,,
所以,直线与平面所成的角为.
□2.解法一:(Ⅰ)取中点,连结.
A
B
C
D
O
F
为正三角形,.
正三棱柱中,平面平面,
平面.
连结,在正方形中,分别为
的中点,
,
.
在正方形中,,
平面.
(Ⅱ)设与交于点,在平面中,作于,连结,由(Ⅰ)得平面.
,
为二面角的平面角.
在中,由等面积法可求得,
又,
.
所以二面角的大小为.
(Ⅲ)中,,.
在正三棱柱中,到平面的距离为.
设点到平面的距离为.
由得,
.
点到平面的距离为.
解法二:(Ⅰ)取中点,连结.
为正三角形,.
在正三棱柱中,平面平面,
平面.
取中点,以为原点,,,的方向为轴的正方向建立空间直角坐标系,则,,,,,
,,.
x
z
A
B
C
D
O
F
y
,,
,.
平面.
(Ⅱ)设平面的法向量为.
,.
,,
令得为平面的一个法向量.
由(Ⅰ)知平面,
为平面的法向量.
,.
二面角的大小为.
(Ⅲ)由(Ⅱ),为平面法向量,
.
点到平面的距离.
□3. 证明:
(Ⅰ)由题设,连结,为等腰直角三角形,所以,且,又为等腰三角形,故,且,从而.
所以为直角三角形,.
又.
所以平面.
(Ⅱ)解法一:
取中点,连结,由(Ⅰ)知,得.
为二面角的平面角.
由得平面.
所以,又,
故.
所以二面角的余弦值为.
解法二:
以为坐标原点,射线分别为轴、轴的正半轴,建立如图的空间直角坐标系.
设,则.
的中点,.
.
故等于二面角的平面角.
,
所以二面角的余弦值为.
□4. 解:解法一:(I)因为平面平面,平面平面,,平面,所以平面,又平面,所以平面平面.
(II)过点作于点,连结.
由(I)的结论可知,平面,
所以是和平面所成的角.
因为平面平面,平面平面,,
平面,所以平面,故.
因为,,所以可在上取一点,使,又因为,所以四边形是矩形.
由题设,,,则.所以,,
,.
因为平面,,所以平面,从而.
故,.
又,由得.
故.
即直线与平面所成的角是.
解法二:(I)因为平面平面,平面平面,,
平面,所以平面,从而.又,所以平面.因为平面,所以平面平面.
(II)由(I)可知,平面.故可以为原点,分别以直线为轴、轴、轴建立空间直角坐标系(如图),
由题设,,,则,
,,相关各点的坐标分别是,
,,.
所以,.
设是平面的一个法向量,
由得故可取.
过点作平面于点,因为,所以,于是点在轴上.
因为,所以,.
设(),由,解得,
所以.
设和平面所成的角是,则
.
故直线与平面所成的角是.
展开阅读全文