资源描述
第三章 图形的平移与旋转
回顾与思考
【教学内容】第三章 图形的平移与旋转的复习小结。
【教学目标】
知识与技能
经历观察、操作、欣赏和设计的过程,从事图形平移、旋转基本性质的探索活动,进一步发展空间观念,培养操作技能、增强审美意识。
过程与方法
通过观察、分析、推论,自主探究与合作交流相结合,发展学生的识图能力及逻辑推理能力。
情感、态度与价值观
让学生经历操作、实验、发现、确认等数学活动,体会数学观点,培养学生的数学意识。
【教学重难点】
重点:运用轴对称、平移、旋转……等方法及它们的组合进行的图案设计。
难点:运用轴对称、平移、旋转……等方法及它们的组合进行的图案设计。
【导学过程】
【知识回顾】
平移的定义:在平面内,将一个图形沿_________移动一定距离,这样的图形运动称为平移。
平移不改变图形的________和_______________。
平移的基本性质:经过平移,_____________,_____________分别相等;对应点所连的线段__________________。
旋转的定义:在平面内,将一个图形绕一个定点沿_____________转动一个角度,这样的图形运动称为旋转。
旋转补改变图形的__________和_________。
旋转的基本性质:经过旋转,对应点与旋转中心所成的角都等于_____________,对应点到旋转中心的距离___________。
【新知探究】
探究一、
7、在括号内填上图形从甲到乙的变换关系:
( )
甲
乙
甲
乙
乙
甲
( )
( )
8、上右图中的图案绕中心至少旋转 度后能和原来的图案相互重合。
9、如图,E为正方形ABCD内一点,∠AEB=135º,BE=3cm,
按顺时针方向旋转一个角度后成为,图中
________是旋转中心,旋转_______度,点A与点______
是对应点,点E与点______是对应点,是_______
三角形,∠CBF=∠______,∠BFC=___________度,∠EFC
=__________度,BF=_________cm.
_
D
_
G
_
F
_
E
_
C
_
B
_
A
10、已知正方形ABCD和正方形AEFG有一个公共点A,若将正方形AEFG绕点A按顺时针方向旋转, 连结DG,在旋转的过程中,你能否找到一条线段的长与线段DG的长始终相等.并说明理由.
11、下列图形中,不能由图形M经过一次平移或旋转得到的是( ).
A
B
C
D
M
探究二、
1、下列例题正确的是……………………………………( ).
A、两个会重合的三角形一定成轴对称.
B、两个会重合的三角形一定成中心对称.
C、成轴对称的两个图形中,对称线段平行且相等.
D、成中心对称的两个图形中,对称线段平行(或在同一条直线是)且相等
2、下列的说法中,不正确的是……………………………………( ).
(A)中心对称图形的对称中心也是连接对称点线段的中点.
(B)轴对称图形的对称轴是连接对称点线段的垂直平分线
(C)矩形是以对角线为对称轴的轴对称图形.
(D)线段是以其中点为对称中心的中心对称图形
3、如图,ΔABC和ΔADE都是等腰直角三角形,∠ACB和∠ADE都是直角,点C在AE上,ΔABC绕着A点经过逆时针旋转后能够与ΔADE重合得到左图,再将左图作为“基本图形”绕着A点经过逆时针连续旋转得到右图.两次旋转的角度分别为( ).
A、45°,90° B、90°,45°
C、60°,30° D、30°,60°
4、如图,的∠BAC=120º,以BC为边向形外作等边,把 绕着D点按顺时针方向旋转60º后到的位置。若,求∠BAD的度数和AD的长.
【知识梳理】
本节课你还有什么疑惑?
【随堂练习】
复习题1——9题。
展开阅读全文