1、6.4 梯形(2)【教学目标】1、 经历等腰梯形判定定理的发现和证明过程。2、 掌握等腰梯形的判定定理。3、 了解对角线相等的梯形是等腰梯形及其证明过程。【教学重点、难点】重点:等腰梯形的判定定理难点:例2的证明过程较复杂【教学过程】一、 复习并导入新知:1、 提问:等腰梯形有哪些性质?答:等腰梯形同一底上的两个底角相等,两条对角线相等。“等腰梯形同一底上的两个底角相等”的逆命题是什么?逆命题:在同一底上的两个角相等的梯形是等腰梯形。二、 新课讲授,探究新知 A D1、 指导学生完成这一逆命题的证明:已知:梯形ABCD,ADBC,B=C,求证:梯形ABCD是等腰梯形。证明:分析:这一结论主要运
2、用等腰三角形的判定。 B E C(1) 如图:过D点作AB的平行线交BC于E,证明:略。 E(2) 其次,介绍另两种方法 分别延长两腰交于一点通过EAD、EBC都是等腰三角形来证明 指导学生来完成。 A D B C 作梯形ABCD的高AE、DF通过证明RTABERTDCF来证明。指导学生来完成。 A D B E F C 推导得出:等腰梯形的判定定理在同一底上的两个底角相等的梯形是等腰梯形。2、 练习:求证:对角互补的梯形是等腰梯形3、 证明:对角线相等的梯形是等腰梯形 4、 例2已知:梯形ABCD,ADBC,AC=BD,求证:AB=DC。 A D(1)证明:过D作AC的延长线交BC延长线于E。
3、证明:略。 B C E(2)可让学生尝试其它的证明方法。如;过点A和点D分别作BC的垂线段。三、 应用新知,体验成功1、 练习:P152课内练习2 作业题1、2 2、判断正误:(1)有两个角相等的梯形一定是等腰梯形.(2)两条对角线相等的梯形一定是等腰梯形.(3)如果一个梯形是轴对称图形,则它一定是等腰梯形.(4) 一组对边平行,另一组对边相等的四边形一定是等腰梯形.(5)对角互补的梯形一定是等腰梯形.(6)有两个角等于70的梯形是等腰梯形。3、已知:如图,梯形 中, , 、 分别为 、 中点,且 ,求证:梯形 为等腰梯形4、画一个等腰梯形,使它的上、下底边长分别为5、11、高为4,并计算这个等腰梯形的周长和面积。因为三角形具有稳定性,这个作图以作一条高为基础。四、 小结内容,自我反馈 一组对边平行 两腰相等(定义)四边形 梯形 等腰梯形 另一组对边不平行 同一底上两底角相等、两对角线相等 (两种判定方法)