1、6.4 梯形(1)【教学目标】1 掌握梯形的有关概念2 掌握等腰梯形的概念和性质定理3在简单的操作活动中发展学生的说理意识、主动探究的习惯,初步体会平移、轴对称的有关知识在研究等腰梯形性质中的运用形问题来解决的化归思想【教学重点、难点】重点:等腰梯形的性质定理及其应用难点:“等腰梯形同一底上的两个底角相等”的证明和例1,都需要添加辅助线,思路不易形成【教学过程】一、回顾知识的连续和类比本章中已经研究了哪几种特殊四边形?二、创设问题情境引出梯形概念观察一组图片,在图中有你熟悉的图形吗?三、探究:底(一)看看学学梯形的有关概念1、梯形:一组对边平行而另一组对边不平行的四边形叫做梯形。高腰腰一些基本
2、概念(如图):底、腰、高。底2、等腰梯形:两腰相等的梯形叫做等腰梯形。3、直角梯形:一腰和底垂直的梯形叫做直角梯形。(二)想想说说比较梯形与平行四边形梯形与平行四边形有什么异同?(三)做做议议探索等腰梯形的性质1. 在一张有平行线条的纸上作一个等腰梯形图中有哪些相等的线段?有哪些相等的角?这个图形是轴对称图形吗?你能设法验证你的猜想吗?(1) 学生画图并通过观察猜想;(2) 小组合作交流,共同探索验证方法:利用轴对称性、图形的平移等。(3) 学生汇报探索成果,归纳等腰梯形的性质:等腰梯形是轴对称图形,对称轴是连接两底中点的直线。等腰梯形同一底上的两个内角相等,两条对角线相等。下面来验证:已知:
3、如图,在梯形ABCD中,ADBC ,AB=CD 求证:(1)ABC=DCB,BAD=CDA;(2)AC=BD分析:我们学过“如果一个三角形中有两条边相等,那么它们所对的角相等”因此,我们只要能将等腰梯形同一底上的两个角转化为等腰三角形的两个底角,定理就容易证明了(引导学生口述证明方法,然后利用多媒体出示二种证明方法)(1)如图,过点 DE作AB,交BC于E,得ABED,所以得AB=DEDEC=ABC,又由AB=CD得DE=CD,因此可得ABC=DCB(2)作高 、 通过证 ,推出ABC=DCB(证明过程略)例1、如图,四边形ABCD是等腰梯形,ADBC,已知B=60,AD=15,AB=45,求
4、BC的长.辅助线的添法:延长两腰.把问题转化为三角形来解决.解 延长BA,CD交于点E ADBCEAD=B, EDA=C又B=C(等腰梯形同一底上的两个底角相等),且B=60 EAD=EDA=60 EAD, EBC都是等边三角形. EA=AD=15 BC=EB=EA+AB=15+45=60.(四)小试牛刀等腰梯形性质的简单应用1、已知等腰梯形的一个内角等于70,你能确定其他三个内角的度数吗?2、已知等腰梯形的上、下底边长分别是2,8,腰长是5,求这个梯形的高及面积.3、如图,将等腰梯形ABCD的一条对角线BD平移到CE的位置,则图中有平行四边形吗?CAE是等腰三角形吗?为什么? AD五、想想试试发展综合应用能力 FBC如图,在ABCD梯形中,ADBC,AB=CD, 且AD=2,BC=4,高DF=2,求腰DC的长。 四、反思收获园地梯形有什么显著特征?有哪几种特殊梯形?今天我们主要研究了其中的哪一种?等腰梯形有什么性质?今天我们在研究梯形问题时,可以用哪些方法将梯形问题转化成其他图形问题?五、作业:见作业本本节内容