1、17.2勾股定理的逆定理【教学目标】知识与技能:1.理解原命题、逆命题、逆定理的概念及关系.2.会用勾股定理的逆定理判断直角三角形.过程与方法:经历探索勾股定理的逆定理的过程,发展学生的推理能力和有条理的表达能力,培养学生的综合能力.情感态度与价值观:通过小组合作与交流,培养学生团结协作的精神和探索精神,有助于塑造他们挑战困难,挑战生活的勇气和信心.【重点难点】重点:理解并掌握勾股定理的逆定理,并会应用. 难点:勾股定理的逆定理的证明.【教学过程】一、创设情境,导入新课小明做了一个长为40 cm,宽为30 cm的长方形模型,高兴地交给了老师,老师接过小明的模型,用刻度尺度量了模型的长宽所在的对
2、角线,量得对角线的长为56 cm,然后老师指着模型对小明说:“这个角不是直角,你做的模型不合格.”小明不高兴地问老师:“老师,只通过直尺度量就能判断一个角不是直角吗?”同学们有这样的疑问吗?老师通过直尺度量判断直角有没有根据?带着这些问题,我们学习本节知识.二、探究归纳活动1:互逆命题、互逆定理1.问题1:下面几组数分别是一个三角形的边长a、b、c(单位:cm). 3、4、5;4、7、9;6、8、10.(1)这三组数都满足a2+b2=c2吗?(2)尺规作图:分别以每组数为三边长作出三角形.(3)用量角器量一量,它们是直角三角形吗?提示:(1)满足a2+b2=c2,不满足(2)略(3)是直角三角
3、形,不是直角三角形.2.思考:根据上面的几个例子,你能提出一个数学命题吗?3.归纳:如果一个三角形的三边长a,b,c满足_,那么这个三角形是_ .答案:a2+b2=c2直角三角形4.问题2:阅读,命题1 : 如果一个三角形是直角三角形,两直角边长为a,b,斜边长为c,那么a2+b2=c2.命题2 :如果一个三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形. (1)观察命题2与命题1,你有什么发现?发现:两个命题的_、_正好相反,命题1的_是命题2的_;命题1的_是命题2的_.我们把像这样的两个命题叫做_.如果把其中一个叫_,那么另一个叫做它的_.(2)你能举出互逆命题的
4、例子吗?(3)如果原命题正确,那么逆命题也正确吗?举例说明.提示:(1)题设结论 题设 结论 结论 题设互逆命题原命题 逆命题(2)略(3)不一定 略5.思考:一个三角形各边长数量应满足怎样的关系时,这个三角形才是直角三角形呢?提示:三角形的三边长a,b,c满足a2+b2=c2时, 这个三角形是直角三角形.活动2:1.问题:已知ABC中,BC=3,AC=4,AB=5,求证ABC是直角三角形.证明:如图,画一个RtABC,使BC=_,AC= _,C= _. BC=3,AC=4,BC=_=3 ,AC=_=4,由勾股定理,得AB2=BC2+AC2=_+_=_,AB=_,AB=5,AB=_ ,在ABC
5、和ABC中,ABCABC()C= _= _ABC是直角三角形.提示:BCAC90BCAC 32 42 255ABBC=BC,AC=AC,AB= ABSSSC902.思考:若ABC的三边不是3、4、5,而是a,b,c,但同样满足a2+b2=c2,你能证明ABC是直角三角形吗?提示:略3.思考:如果一个定理的逆命题经过证明是正确的,那么它也是一个定理吗?提示:是归纳:1.如果三角形的三边长是a,b,c,满足a2+b2=c2,那么这个三角形是直角三角形,是真命题,可以用来判定直角三角形,我们把它称为勾股定理的逆定理.2.一般地,如果一个定理的逆命题经过证明是正确的,那么它也是一个定理,称这两个定理“
6、互为逆定理”.活动3:勾股数思考:我们知道3、4、5是一组勾股数,那么3k、4k、5k(k是正整数)也是一组勾股数吗?一般地,如果a、b、c是一组勾股数,那么ak、bk、ck(k是正整数)也是一组勾股数吗?提示:是6.应用举例【例1】下列四个命题中:对顶角相等;同旁内角互补;全等三角形的对应角相等;两直线平行,同位角相等,其中是假命题的有_(填序号).分析:要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.解:对顶角相等是真命题;同旁内角互补是假命题;全等三角形的对应角相等是真命题;两直线平行,同位角相等是真命题;故是假命题有.答案:总结:要判断一个命题
7、是假命题,只需举出一个反例即可.【例2】观察以下几组勾股数,并寻找规律:4,3,5;6,8,10;8,15,17;10,24,26;,根据以上规律的第组勾股数是()A.14、48、49B.16、12、20C.16、63、65D.16、30、34分析:根据前面的几组数可以得到每组勾股数与各组的序号之间的关系,如果是第n组数,则这组数中的第一个数是2(n+1),第二个是:n(n+2),第三个数是:(n+1)2+1.根据这个规律即可解答.解:选C.根据题目给出的前几组数的规律可得:这组数中的第一个数是2(n+1),第二个数是n(n+2),第三个数是(n+1)2+1,故可得第组勾股数是16,63,65
8、.总结:勾股数满足的条件只要三个整数中,满足较小两个整数平方的和等于较大整数的平方,那么这三个整数就是一组勾股数.【例3】如图四边形ABCD是一块草坪,量得四边长AB=3 m,BC=4 m,DC=12 m,AD=13 m,B=90,求这块草坪的面积.分析:连接AC,可以把四边形分割成两个三角形,由勾股定理及逆定理说明ACD为直角三角形,利用三角形面积公式可求四边形ABCD的面积.解:连接AC,在RtABC中,AB=3 m,BC=4 m,B=90,由勾股定理得AB2+BC2=AC2,AC=5 m. 在ADC中,AC=5 m,DC=12 m,AD=13 mAC2+DC2=169,AD2=169,A
9、C2+DC2=AD2 ,ACD为直角三角形,即ACD=90. 所以四边形的面积=SRtABC+SRtADC=ABBC+ACDC=34+512=36(m2)即这块草坪的面积是36 m2.总结:应用勾股定理的逆定理判断三条线段能否构成直角三角形的方法1.排序:把三条线段按由小到大排列; 2.计算:看较小两条线段边的平方和是否等于最大线段的平方; 3.结论:判断能否构成直角三角形.三、交流反思这节课我们学习了互逆命题(定理),探索了勾股定理的逆定理,掌握了直角三角形的判别条件(即勾股定理的逆定理),并能进行简单应用,理解勾股定理和勾股定理的逆定理之间的区别.四、检测反馈1.下列各组数中,是勾股数的为
10、()A.1,2,3B.4,5,6C.3,4,5D.7,8,92.分别有下列几组数据:6、8、1012、13、57、8、1540、41、9.其中是勾股数的有()A.4组B.3组C.2组D.1组3.把命题“如果直角三角形的两直角边长分别为a、b,斜边长为c,那么a2+b2=c2”的逆命题改写成“如果,那么”的形式: _. 4.下列命题中,其逆命题成立的是_.(只填写序号)同旁内角互补,两直线平行;如果两个角是直角,那么它们相等;如果两个实数相等,那么它们的平方相等;如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形.5.叙述下列命题的逆命题,并判断逆命题是否正确.(1)如
11、果a30,那么a20;(2)如果三角形有一个角小于90,那么这个三角形是锐角三角形;(3)如果两个三角形全等,那么它们的对应角相等;(4)关于某条直线对称的两条线段一定相等.6.如图在ABC中,AB=13,BC=10,BC边上的中线AD=12.求:(1)AC的长度;(2)ABC的面积.7.如图是一块地的平面图,AD=4 m,CD=3 m,AB=13 m,BC=12 m,ADC=90,求这块地的面积.五、布置作业教科书第34页习题17.2第1,2,5题六、板书设计17.2勾股定理的逆定理一、互逆命题(定理)二、勾股数三、勾股定理的逆定理四、例题讲解五、板演练习七、教学反思勾股定理的逆定理这节课的
12、教学,我采用了体验探究的教学方式.在课堂教学中,我首先创设情境,提出问题;再让学生通过画图、测量、判断、找规律,猜想出一般的结论;然后由学生想、画、剪、叠,去验证结论使学生自始至终感悟、体验、尝试到了知识的生成过程,品尝到成功的乐趣.这不仅使学生学到获取知识的思想和方法,同时也体会到在解决问题的过程中与他人合作的重要性,而且为学生今后获取知识以及探索、发现和创造打下了良好的基础,更增强了学生敢于实践、勇于探索、不断创新和努力学习数学知识的信心和勇气.对互逆命题,原命题,逆命题,互逆定理,逆定理等概念的讲解可随题点化,而详细讲解、随堂练习可做为第二课时的重点,挤出更多时间来做勾股定理逆定理的相应练习,特别是应加大有灵活度和难度的生活习题的练习,拓宽学生知识面,提高学生的发散思维能力.