收藏 分销(赏)

九年级数学上册 21.2.1 二次函数yax2的图像和性质教案 (新版)沪科版-(新版)沪科版初中九年级上册数学教案.doc

上传人:s4****5z 文档编号:7638456 上传时间:2025-01-10 格式:DOC 页数:5 大小:203KB 下载积分:10 金币
下载 相关 举报
九年级数学上册 21.2.1 二次函数yax2的图像和性质教案 (新版)沪科版-(新版)沪科版初中九年级上册数学教案.doc_第1页
第1页 / 共5页
九年级数学上册 21.2.1 二次函数yax2的图像和性质教案 (新版)沪科版-(新版)沪科版初中九年级上册数学教案.doc_第2页
第2页 / 共5页


点击查看更多>>
资源描述
二次函数y=ax2的图象和性质 教学目标 【知识与技能】 使学生会用描点法画出函数y=ax2的图象,理解并掌握抛物线的有关概念及其性质. 【过程与方法】 使学生经历探索二次函数y=ax2的图象及性质的过程,获得利用图象研究函数性质的经验,培养学生分析、解决问题的能力. 【情感、态度与价值观】 使学生经历探索二次函数y=ax2的图象和性质的过程,培养学生观察、思考、归纳的良好思维品质. 重点难点 【重点】 使学生理解抛物线的有关概念及性质,会用描点法画出二次函数y=ax2的图象. 【难点】 用描点法画出二次函数y=ax2的图象以及探索二次函数的性质. 教学过程 一、问题引入 1.一次函数的图象是什么?反比例函数的图象是什么? (一次函数的图象是一条直线,反比例函数的图象是双曲线.) 2.画函数图象的一般步骤是什么? 一般步骤:(1)列表(取几组x,y的对应值);(2)描点(根据表中x,y的数值在坐标平面中描点(x,y));(3)连线(用平滑曲线). 3.二次函数的图象是什么形状?二次函数有哪些性质? (运用描点法作二次函数的图象,然后观察、分析并归纳得到二次函数的性质.) 二、新课教授 【例1】 画出二次函数y=x2的图象. 解:(1)列表中自变量x可以是任意实数,列表表示几组对应值. x … -3 -2 -1 0 1 2 3 … y … 9 4 1 0 1 4 9 … (2)描点:根据上表中x,y的数值在平面直角坐标系中描点(x,y). (3)连线:用平滑的曲线顺次连接各点,得到函数y=x2的图象,如图所示. 思考:观察二次函数y=x2的图象,思考下列问题: (1)二次函数y=x2的图象是什么形状? (2)图象是轴对称图形吗?如果是,它的对称轴是什么? (3)图象有最低点吗?如果有,最低点的坐标是什么? 师生活动: 教师引导学生在平面直角坐标系中画出二次函数y=x2的图象,通过数形结合解决上面的3个问题. 学生动手画图,观察、讨论并归纳,积极展示探究结果,教师评价. 函数y=x2的图象是一条关于y轴(x=0)对称的曲线,这条曲线叫做抛物线.实际上二次函数的图象都是抛物线.二次函数y=x2的图象可以简称为抛物线y=x2. 由图象可以看出,抛物线y=x2开口向上;y轴是抛物线y=x2的对称轴:抛物线y=x2与它的对称轴的交点(0,0)叫做抛物线的顶点,它是抛物线y=x2的最低点.实际上每条抛物线都有对称轴,抛物线与对称轴的交点叫做抛物线的顶点,顶点是抛物线的最低点或最高点. 【例2】 在同一直角坐标系中,画出函数y=x2及y=2x2的图象. 解:分别填表,再画出它们的图象. x … -4 -3 -2 -1 0 1 2 3 4 … y=x2 … 8 4.5 2 0.5 0 0.5 2 4.5 8 … x … -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 … y=2x2 … 8 4.5 2 0.5 0 0.5 2 4.5 8 … 思考:函数y=x2、y=2x2的图象与函数y=x2的图象有什么共同点和不同点? 师生活动: 教师引导学生在平面直角坐标系中画出二次函数y=x2、y=2x2的图象. 学生动手画图,观察、讨论并归纳,回答探究的思路和结果,教师评价. 抛物线y=x2、y=2x2与抛物线y=x2的开口均向上,顶点坐标都是(0,0),函数y=2x2的图象的开口较窄,y=x2的图象的开口较大. 探究1:画出函数y=-x2、y=-x2、y=-2x2的图象,并考虑这些图象有什么共同点和不同点。 师生活动: 学生在平面直角坐标系中画出函数y=-x2、y=-x2、y=-2x2的图象,观察、讨论并归纳. 教师巡视学生的探究情况,若发现问题,及时点拨. 学生汇报探究的思路和结果,教师评价,给出图形. 抛物线y=-x2、y=-x2、y=-2x2开口均向下,顶点坐标都是(0,0),函数y=-2x2的图象开口最窄,y=-x2的图象开口最大. 探究2:对比抛物线y=x2和y=-x2,它们关于x轴对称吗?抛物线y=ax2和y=-ax2呢? 师生活动: 学生在平面直角坐标系中画出函数y=x2和y=-x2的图象,观察、讨论并归纳. 教师巡视学生的探究情况,发现问题,及时点拨. 学生汇报探究思路和结果,教师评价,给出图形. 抛物线y=x2、y=-x2的图象关于x轴对称.一般地,抛物线y=ax2和y=-ax2的图象也关于x轴对称. 教师引导学生小结(知识点、规律和方法). 一般地,抛物线y=ax2的对称轴是y轴,顶点是原点.当a>0时,抛物线y=ax2的开口向上,顶点是抛物线的最低点,当a越大时,抛物线的开口越小;当a<0时,抛物线y=ax2的开口向下,顶点是抛物线的最高点,当a越大时,抛物线的开口越大. 从二次函数y=ax2的图象可以看出:如果a>0,当x<0时,y随x的增大而减小,当x>0时,y随x的增大而增大;如果a<0,当x<0时,y随x的增大而增大,当x>0时,y随x的增大而减小. 三、巩固练习 1.抛物线y=-4x2-4的开口向 ,顶点坐标是 ,对称轴是 ,当x= 时,y有最 值,是 . 【答案】下 (0,-4) x=0 0 大 -4 2.当m≠ 时,y=(m-1)x2-3m是关于x的二次函数. 【答案】1 3.已知抛物线y=-3x2上两点A(x,-27),B(2,y),则x= ,y= . 【答案】-3或3 -12 4.抛物线y=3x2与直线y=kx+3的交点坐标为(2,b),则k= ,b= . 【答案】 12 5.已知抛物线的顶点在原点,对称轴为y轴,且经过点(-1,-2),则抛物线的表达式为 . 【答案】y=-2x2 6.在同一坐标系中,图象与y=2x2的图象关于x轴对称的是( ) A.y=x2 B.y=x2 C.y=-2x2 D.y=-x2 【答案】C 7.抛物线y=4x2、y=-2x2、y=x2的图象,开口最大的是( ) A.y=x2 B.y=4x2 C.y=-2x2 D.无法确定 【答案】A 8.对于抛物线y=x2和y=-x2在同一坐标系中的位置,下列说法错误的是( ) A.两条抛物线关于x轴对称 B.两条抛物线关于原点对称 C.两条抛物线关于y轴对称 D.两条抛物线的交点为原点 【答案】C 四、课堂小结 1.二次函数y=ax2的图象过原点且关于y轴对称,自变量x的取值范围是一切实数. 2.二次函数y=ax2的性质:抛物线y=ax2的对称轴是y轴,顶点是原点.当a>0时,抛物线y=x2开口向上,顶点是抛物线的最低点,当a越大时,抛物线的开口越小;当a<0时,抛物线y=ax2开口向下,顶点是抛物线的最高点,当a越大时,抛物线的开口越大. 3.二次函数y=ax2的图象可以通过列表、描点、连线三个步骤画出来. 教学反思 本节课的内容主要研究二次函数y=ax2在a取不同值时的图象,并引出抛物线的有关概念,再根据图象总结抛物线的有关性质.整个内容分成:(1)例1是基础;(2)在例1的基础之上引入例2,让学生体会a的大小对抛物线开口宽阔程度的影响;(3)例2及后面的练习探究让学生领会a的正负对抛物线开口方向的影响;(4)最后让学生比较例1和例2,练习归纳总结.
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传

当前位置:首页 > 教育专区 > 初中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服