资源描述
多边形的内角和
教学
目标
知识与技能
掌握多边形的内角和与外角和的计算方法,并能用其解决一些简单的问题;通过多边形内角和计算公式的推导,体验转化和类比的数学思想方法
过程与方法
1:让学生经历猜想、探索、推理、归纳等过程,发展学生的合情推理能力和语言表达能力,掌握复杂问题化为简单问题,化未知为已知的思想方法。2:通过把多边形转化为三角形,体会转化思想在几何中的运用,让学生体会从特殊到一般的认识问题的方法。
3:通过探索多边形的内角和与外角和,让学生尝试从不同的角度寻求解决问题的方法,并能有效地解决问题
情感态度与价值观
通过动手实践、相互间的交流,进一步激发学习热情和求知欲望。同时,体验猜想得到证实的成就感,在解题中感受生活中数学的存在,体验数学充满探索和创造
教学重点
1:多边形的内角和公式.2:多边形的外角和公式
教学难点
多边形的内角和定理的推导
教学资源
教育网
教学过程
一、探究
1.我们知道三角形的内角和为180°.
2.我们还知道,正方形的四个角都等于90°,那么它的内角和为 360°,同样长方形的内角和也是360°.
3.正方形和长方形都是特殊的四边形,其内角和为360°,那么一般的四边形的内角和为多少呢?
画一个任意的四边形,用量角器量出它的四个内角,计算它们的和,与同伴交流你的结果.
从中你得到什么结论?同学们进行量一量,算一算及交流后老师加以归纳得到四边形的内角和为360°的感性认识,是否成为定理要进行推导.
二、思考几个问题
1.从四边形的一个顶点出发可以引几条对角线?它们将四边形分成几个三角形?那么四边形的内角和等于多少度?
2.从五边形一个顶点出发可以引几条对角线?它们将五边形分成几个三角形?那么这五边形的内角和为多少度?
3.从n边形的一个顶点出发,可以引几条对角线?它们将n边形分成几个三角形?n边形的内角和等于多少度?
综上所述,你能得到多边形内角和公式吗?
设多边形的边数为n,则n边形的内角和等于(n一2)·180°.
想一想:要得到多边形的内角和必需通过“三角形的内角和定理”来完成,就是把一个多边形分成几个三角形.除利用对角线把多边形分成几个三角形外,还有其他的分法吗?你会用新的分法得到n边形的内角和公式吗?
由同学动手并推导在与同伴交流后,教师归纳
三、例题
例1如果一个四边形的一组对角互补,那么另一组对角有什么关系?
例2如图,在六边形的每个顶点处各取一个外角,这些外角的和叫做六边形的外角和.六边形的外角和等于多少?
如果把六边形横成n边形.(n为不小于3的正整数)
同样也可以得到其外角和等于360°.即
多边形的外角和等于360°.
所以我们说多边形的外角和与它的边数无关.
对此,我们也可以象以下这种,理解为什么多边形的外角和等于360°.
如下图,从多边形的一个顶点A出发,沿多边形各边走过各顶点,再回到A点,然后转向出发时的方向,在行程中所转的各个角的和就是多边形的外角和,由于走了一周,所得的各个角的和等于一个周角,所以多边形的外角和等于360°.
四、课堂练习 课本P24练习1、2、3题P24第2、3题
五、课堂小结 引导学生总结本节课主要内容.
六、课后作业 课本P25第4、5、6题.
备 注
展开阅读全文