1、152.3整数指数幂1知道负整数指数幂an.(a0,n是正整数)2掌握整数指数幂的运算性质3会用科学记数法表示绝对值小于1的数重点掌握整数指数幂的运算性质,会有科学记数法表示绝对值小于1的数难点负整数指数幂的性质的理解和应用一、复习引入1回忆正整数指数幂的运算性质:(1)同底数的幂的乘法:amanamn(m,n是正整数);(2)幂的乘方:(am)namn(m,n是正整数);(3)积的乘方:(ab)nanbn(n是正整数);(4)同底数的幂的除法:am anamn(a0,m,n是正整数,mn);(5)分式的乘方:()n(n是正整数)2回忆0指数幂的规定,即当a0时,a01.二、探究新知(一)1.
2、计算当a0时,a3a5,再假设正整数指数幂的运算性质amanamn(a0,m,n是正整数,mn)中的mn这个条件去掉,那么a3a5a35a2.于是得到a2(a0)总结:负整数指数幂的运算性质:一般的,我们规定:当n是正整数时,an(a0)2练习巩固:填空:(1)22_,(2)(2)2_,(3)(2)0_, (4)20_,(5)23_, (5)(2)3_3例1(教材例9)计算:(1)a2a5;(2)()2;(3)(a1b2)3;(4)a2b2(a2b2)3.解:(1)a2a5a25a7;(2)()2a4b6;(3)(a1b2)3a3b6;(4)a2b2(a2b2)3a2b2a6b6a8b8.分析
3、本例题是应用推广后的整数指数幂的运算性质进行计算,与用正整数指数幂的运算性质进行计算一样,但计算结果有负指数幂时,要写成分式形式4练习:计算:(1)(x3y2)2;(2)x2y2(x2y)3;(3)(3x2y2)2(x2y)3.5例2判断下列等式是否正确?(1)amanaman;(2)()nanbn.分析类比负数的引入使减法转化为加法,得到负指数幂的引入可以使除法转化为幂的乘法这个结论,从而使分式的运算与整式的运算统一起来,然后再判断等式是否正确(二)1.用科学记数法表示值较小的数因为0.1101;0.01_;0001_所以0.000 0252.50.000 012.5105.我们可以利用10
4、的负整数次幂,用科学记数法表示一些绝对值较小的数,即将它们表示成a10n的形式,其中n是正整数,1|a|10.2例3(教材例10)纳米是非常小的长度单位,1纳米109米,把1纳米的物体放到乒乓球上,就如同把乒乓球放到地球上.1立方毫米的空间可以放多少个1立方纳米的物体?(物体之间的间隙忽略不计)分析这是一个介绍纳米的应用题,是应用科学记数法表示小于1的数3用科学记数法表示下列各数:000 04,0.034,0.000 000 45,0.003 009.4计算:(1)(3108)(4103);(2)(2103)2(103)3.三、课堂小结1引进了零指数幂和负整数幂,指数的范围扩大到了全体整数,幂的性质仍然成立2科学记数法不仅可以表示一个值大于10的数,也可以表示一些绝对值较小的数,在应用中,要注意a必须满足1|a|10,其中n是正整数四、布置作业教材第147页习题15.2第7,8,9题本节课教学的主要内容是整数指数幂,将以前所学的有关知识进行了扩充在本节的教学设计上,教师重点挖掘学生的潜在能力,让学生在课堂上通过观察、验证、探究等活动,加深对新知识的理解