收藏 分销(赏)

八年级数学上册 第16课时 角平分线的性质教案2 (新版)新人教版-(新版)新人教版初中八年级上册数学教案.doc

上传人:s4****5z 文档编号:7637132 上传时间:2025-01-10 格式:DOC 页数:6 大小:211.50KB
下载 相关 举报
八年级数学上册 第16课时 角平分线的性质教案2 (新版)新人教版-(新版)新人教版初中八年级上册数学教案.doc_第1页
第1页 / 共6页
八年级数学上册 第16课时 角平分线的性质教案2 (新版)新人教版-(新版)新人教版初中八年级上册数学教案.doc_第2页
第2页 / 共6页
八年级数学上册 第16课时 角平分线的性质教案2 (新版)新人教版-(新版)新人教版初中八年级上册数学教案.doc_第3页
第3页 / 共6页
八年级数学上册 第16课时 角平分线的性质教案2 (新版)新人教版-(新版)新人教版初中八年级上册数学教案.doc_第4页
第4页 / 共6页
八年级数学上册 第16课时 角平分线的性质教案2 (新版)新人教版-(新版)新人教版初中八年级上册数学教案.doc_第5页
第5页 / 共6页
点击查看更多>>
资源描述

1、角平分线的性质总课题全等三角形总课时数第 16课时课 题角平分线的性质(2)主 备 人课型新授时 间教学目标1会叙述角的平分线的性质,即“到角两边距离相等的点在角的平分线上”2能应用这两个性质解决一些简单的实际问题教学重点角平分线的性质及其应用教学难点灵活应用两个性质解决问题教学过程教 学 内 容 一创设情境,引入新课 师:请同学们拿出一张纸,自己动手,撕下一个角,把撕下的角对折,使角的两边叠合在一起,再把纸片展开,你看到了什么?把对折的纸片再任意折一次,然后把纸片展开,又看到了什么? 生:我发现第一次对折后的折痕是这个角的平分线;再折一次,又会出现两条折痕,而且这两条折痕是等长的这种方法可以

2、做无数次,所以这种等长的折痕可以折出无数对 师:你的叙述太精彩了这说明角的平分线除了有平分角的性质,还有其他性质,今天我们就来研究这个问题 二导入新课 角平分线的性质即已知角的平分线,能推出什么样的结论 操作:1折出如图所示的折痕PD、PE 2你与同伴用三角板检测你们所折的折痕是否符合图示要求 画一画: 按照折纸的顺序画出一个角的三条折痕,并度量所画PD、PE是否等长? 拿出两名同学的画图,放在投影下,请大家评一评,以达明确概念的目的 生同学乙的画法是正确的同学甲画的是过角平分线上一点画角平分线的垂线,而不是过角平分线上一点画两边的垂线段,所以同学甲的画法不符合要求 生甲噢,对,我知道了 师同

3、学甲,你再做一遍加深一下印象 问题1:你能用文字语言叙述所画图形的性质吗? 生角平分线上的点到角的两边的距离相等 问题2:(出示投影片)能否用符号语言来翻译“角平分线上的点到角的两边的距离相等”这句话请填下表: 学生通过讨论作出下列概括: 已知事项:OC平分AOB,PDOA,PEOB,D、E为垂足 由已知事项推出的事项:PD=PE 于是我们得角的平分线的性质: 在角的平分线上的点到角的两边的距离相等 师那么到角的两边距离相等的点是否在角的平分线上呢?(出示投影)问题3:根据下表中的图形和已知事项,猜想由已知事项可推出的事项,并用符号语言填写下表: 生讨论已知事项符合直角三角形全等的条件,所以R

4、tPEOPDO(HL)于是可得PDE=POD 由已知推出的事项:点P在AOB的平分线上 师这样的话,我们又可以得到一个性质:到角的两边距离相等的点在角的平分线上同学们思考一下,这两个性质有什么联系吗? 生这两个性质已知条件和所推出的结论可以互换 师对,这是自己的语言,这一点在数学上叫“互逆性” 下面请同学们思考一个问题 思考:如图所示,要在S区建一个集贸市场,使它到公路、铁路距离相等,离公路与铁路交叉处500m,这个集贸市场应建于何处(在图上标出它的位置,比例尺为1:20000)? 1集贸市场建于何处,和本节学的角平分线性质有关吗?用哪一个性质可以解决这个问题? 2比例尺为1:20000是什么

5、意思? (学生以小组为单位讨论,教师可深入到学生中,及时引导) 讨论结果展示: 1应该是用第二个性质这个集贸市场应该建在公路与铁路形成的角的平分线上,并且要求离角的顶点500米处2在纸上画图时,我们经常在厘米为单位,而题中距离又是以米为单位,这就涉及一个单位换算问题了1m=100cm,所以比例尺为1:20000,其实就是图中1cm表示实际距离200m的意思作图如下:第一步:尺规作图法作出AOB的平分线OP 第二步:在射线OP上截取OC=2.5cm,确定C点,C点就是集贸市场所建地了 总结:应用角平分线的性质,就可以省去证明三角形全等的步骤,使问题简单化所以若遇到有关角平分线,又要证线段相等的问

6、题,我们可以直接利用性质解决问题 例如图,ABC的角平分线BM、CN相交于点P求证:点P到三边AB、BC、CA的距离相等 师生共析点P到AB、BC、CA的垂线段PD、PE、PF的长就是P点到三边的距离,也就是说要证:PD=PE=PF而BM、CN分别是B、C的平分线,根据角平分线性质和等式的传递性可以解决这个问题 证明:过点P作PDAB,PEBC,PFAC,垂足为D、E、F 因为BM是ABC的角平分线,点P在BM上 所以PD=PE 同理PE=PF 所以PD=PE=PF 即点P到三边AB、BC、CA的距离相等 三随堂练习 1课本P50练习 2课本P51习题123第3题 在这里要提醒学生直接利用角平分线的性质,无须再证三角形全等 四课时小结 今天,我们学习了关于角平分线的两个性质:角平分线上的点到角的两边的距离相等;到角的两边距离相等的点在角的平分线上它们具有互逆性,可以看出,随着研究的深入,解决问题越来越简便了像与角平分线有关的求证线段相等、角相等问题,我们可以直接利用角平分线的性质,而不必再去证明三角形全等而得出线段相等五课后作业:课本P51页习题123第4、5、6题课后反思

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
  • 八年级数学上册 12.3 角的平分线的性质(第2课时)教案 (新版)新人教版-(新版)新人教版初中八年级上册数学教案.doc八年级数学上册 12.3 角的平分线的性质(第2课时)教案 (新版)新人教版-(新版)新人教版初中八年级上册数学教案.doc
  • 八年级数学上册 12.3 角的平分线的性质(第1课时)教案 (新版)新人教版-(新版)新人教版初中八年级上册数学教案.doc八年级数学上册 12.3 角的平分线的性质(第1课时)教案 (新版)新人教版-(新版)新人教版初中八年级上册数学教案.doc
  • 八年级数学上册 第15课时 角平分线的性质教案1 (新版)新人教版-(新版)新人教版初中八年级上册数学教案.doc八年级数学上册 第15课时 角平分线的性质教案1 (新版)新人教版-(新版)新人教版初中八年级上册数学教案.doc
  • 八年级数学上册 12.3 角平分线的性质教案2 (新版)新人教版-(新版)新人教版初中八年级上册数学教案.doc八年级数学上册 12.3 角平分线的性质教案2 (新版)新人教版-(新版)新人教版初中八年级上册数学教案.doc
  • 八年级数学上册 12.3 角的平分线的性质教案 (新版)新人教版-(新版)新人教版初中八年级上册数学教案.doc八年级数学上册 12.3 角的平分线的性质教案 (新版)新人教版-(新版)新人教版初中八年级上册数学教案.doc
  • 八年级数学上册 12.3 角平分线的性质(1)教案 (新版)新人教版-(新版)新人教版初中八年级上册数学教案.doc八年级数学上册 12.3 角平分线的性质(1)教案 (新版)新人教版-(新版)新人教版初中八年级上册数学教案.doc
  • 秋八年级数学上册 12.3 角的平分线的性质教案 (新版)新人教版-(新版)新人教版初中八年级上册数学教案.doc秋八年级数学上册 12.3 角的平分线的性质教案 (新版)新人教版-(新版)新人教版初中八年级上册数学教案.doc
  • 秋八年级数学上册 12.3.1 角的平分线的性质教案 (新版)新人教版-(新版)新人教版初中八年级上册数学教案.doc秋八年级数学上册 12.3.1 角的平分线的性质教案 (新版)新人教版-(新版)新人教版初中八年级上册数学教案.doc
  • 秋八年级数学上册 12.3.1 角的平分线的性质说课稿 (新版)新人教版-(新版)新人教版初中八年级上册数学教案.doc秋八年级数学上册 12.3.1 角的平分线的性质说课稿 (新版)新人教版-(新版)新人教版初中八年级上册数学教案.doc
  • 八年级数学上册 12.3 角的平分线的性质教学设计 (新版)新人教版-(新版)新人教版初中八年级上册数学教案.doc八年级数学上册 12.3 角的平分线的性质教学设计 (新版)新人教版-(新版)新人教版初中八年级上册数学教案.doc
  • 搜索标签

    当前位置:首页 > 教育专区 > 初中数学

    移动网页_全站_页脚广告1

    关于我们      便捷服务       自信AI       AI导航        获赠5币

    ©2010-2025 宁波自信网络信息技术有限公司  版权所有

    客服电话:4008-655-100  投诉/维权电话:4009-655-100

    gongan.png浙公网安备33021202000488号   

    icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

    关注我们 :gzh.png    weibo.png    LOFTER.png 

    客服