收藏 分销(赏)

陕西省汉中市陕飞一中九年级数学上册 第22章 二次函数(一)教案 (新版)新人教版.doc

上传人:s4****5z 文档编号:7636722 上传时间:2025-01-10 格式:DOC 页数:6 大小:189KB
下载 相关 举报
陕西省汉中市陕飞一中九年级数学上册 第22章 二次函数(一)教案 (新版)新人教版.doc_第1页
第1页 / 共6页
陕西省汉中市陕飞一中九年级数学上册 第22章 二次函数(一)教案 (新版)新人教版.doc_第2页
第2页 / 共6页
点击查看更多>>
资源描述
二次函数 章节 第三章 课题 课型 复习课 教法 讲练结合 教学目标(知识、能力、教育) 1.理解二次函数的概念;掌握二次函数的图像和性质以及抛物线的平移规律; 2.会把二次函数的一般式化为顶点式,确定图象的顶点坐标、对称轴和开口方向,会用描点法画二次函数的图象; 3.会用待定系数法求二次函数的解析式; 4. 利用二次函数的图象,了解二次函数的增减性,会求二次函数的图象与x轴的交点坐标和函数的最大值、最小值 教学重点 二次函数的概念、图像和性质;二次函数解析式的确定。 教学难点 二次函数的图像与系数的关系以及抛物线的平移规律; 教学媒体 学案 教学过程 一:【课前预习】 (一):【知识梳理】 1.二次函数的定义:形如( )的函数为二次函数. 2.二次函数的图象及性质: (1)二次函数的图象是一条 .顶点为,对称轴;当a>0时,抛物线开口向 ,图象有 ,且>,y随x的增大而 ,<,y随x的增大而 ;当a<0时,抛物线开口向 ,图象有 ,且>,y随x的增大而 ,<,y随x的增大而 . (3)当a>0时,当x=时,函数 为;当a<0时,当x= 时,函数 为 3. 二次函数表达式的求法: (1)若已知抛物线上三点坐标,可利用待定系数法求得; (2)若已知抛物线的顶点坐标或对称轴方程,则可采用顶点式: 其中顶点为(h,k)对称轴为直线x=h; (3)若已知抛物线与x轴的交点坐标或交点的横坐标,则可采用两根式:,其中与x轴的交点坐标为(x1,0),(x2,0) (二):【课前练习】 1. 下列函数中,不是二次函数的是( ) A.;B.;C.; D. 2. 函数的图象是(3,2)为顶点的抛物线,则这个函数的解析式是( ) A.;B.;C.;D. 3. 二次函数y=1-6x-3x2 的顶点坐标和对称轴分别是( ) A.顶点(1,4), 对称轴 x=1;B.顶点(-1,4),对称轴x=-1 C.顶点(1,4), 对称轴x=4;D.顶点(-1,4),对称轴x=4 4.把二次函数化成的形式为 ,图象的开口向 ,对称轴是 ,顶点坐标是 ;当 时 随着的增大而减小,当 时,随着的增大而增大;当= 时 函数有 值,其 值是 ;若将该函数经过 的平移可以得到函数的图象。 5. 直线与抛物线的交点坐标为 。 二:【经典考题剖析】 1.下列函数中,哪些是二次函数? 2. 已知抛物线过三点(-1,-1)、(0,-2)、(1,l). (1)求这条抛物线所对应的二次函数的表达式; (2)写出它的开口方向、对称轴和顶点坐标; (3)这个函数有最大值还是最小值? 这个值是多少? 3. 当 x=4时,函数的最小值为-8,抛物线过点(6,0).求: (1)函数的表达式; (2)顶点坐标和对称轴; (3)画出函数图象 (4)x取什么值时,y随x的增大而增大;x取什么值时,y随x增大而减小. 4.已知二次函数的图象如图所示,试判断的符号 5. 已知抛物线y=x2+(2n-1)x+n2-1 (n为常数). (1)当该抛物线经过坐标原点,并且顶点在第四象限时,求出它所对应的函数关系式; (2)设A是(1)所确定的抛物线上位于x轴下方、且在对称轴左侧的一个动点,过A作x轴的平行线,交抛物线于另一点D,再作AB⊥x轴于B,DC⊥x轴于C. ①当BC=1时,求矩形ABCD的周长; ②试问矩形ABCD的周长是否存在最大值?如果存在,请求出这 个最大值,并指出此时A点的坐标;如果不存在,请说明理由. 解:(1)由已知条件,得n2-1=0解这个方程,得n1=1, n2=-1 当n=1时,得y=x2+x, 此抛物线的顶点不在第四象限.当n=-1时,得y=x2-3x, 此抛物线的顶点在第四象限.∴所求的函数关系为y=x2-3x. (2)由y=x2-3x,令y=0, 得x2-3x=0,解得x1=0,x2=3 ∴抛物线与x轴的另一个交点为(3,0)∴它的顶点为(,), 对称轴为直线x=, 其大致位置如图所示, ①∵BC=1,由抛物线和矩形的对称性易知OB=×(3-1)=1.∴B(1,0)∴点A的横坐标x=1, 又点A在抛物线y=x2-3x上,∴点A的纵坐标y=12-3×1=-2. ∴AB=|y|=|-2|=2.∴矩形ABCD的周长为:2(AB+BC)=2×(2+1)=6. ②∵点A在抛物线y=x2-3x上,故可设A点的坐标为(x,x2-3x),∴B点的坐标为(x,0). (0<x<), ∴BC=3-2x, A在x轴下方,∴x2-3x<0, ∴AB=|x2-3x|=3x-x2 ∴矩形ABCD的周长P=2[(3x-x2)+(3-2x)]=-2(x-)2+ ∵a=-2<0,∴当x=时,矩形ABCD的周长P最大值为. 此时点A的坐标为A(,). 三:【课后训练】 1. 把抛物线y=-(x-2)2-1经平移得到( ) A.向右平移2个单位,向上平移1个单位;B.向右平移2个单位,向下平移1个单位 C.向左平移2个单位,向上平移1个单位;D.向左平移2个单位,向下平移1个单位 2. 某公司的生产利润原来是a元,经过连续两年的增长达到了y万元,如果每年增长的百分数都是x,那么y与x的函数关系是( ) A.y=x2+a; B.y= a(x-1)2; C.y=a(1-x)2; D.y=a(l+x)2 3. 设直线 y=2x—3,抛物线 y=x2-2x,点P(1,-1),那么点P(1,-1)( ) A.在直线上,但不在抛物线上; B.在抛物线上,但不在直线上 C.既在直线上,又在抛物线上; D.既不在直线上,又不在抛物线上 4. 二次函数 y=2(x-3)2+5的图象的开口方向、对称轴和顶点坐标分别为( ) A.开口向下,对称轴x=-3,顶点坐标为(3,5) B.开口向下,对称轴x=3,顶点坐标为(3,5) C.开口向上,对称轴x=-3,顶点坐标为(-3,5) D.开口向上,对称轴x=-3,顶点坐标为(-3,-5) 5.已知 y=(a-3)x2+2x-l是二次函数;当a______时,它的图象是开口向上的抛物线,抛物线与y轴的交点坐标 . 6.抛物线如图所示,则它关于y轴对称的抛物线的解析式是 7.已知抛物线的对称轴为直线x=-2,且经过点(-l,-1),(-4,0)两点. (1)求这条抛物线所对应的二次函数的表达式; (2)写出它的开口方向、对称轴和顶点坐标; (3)这个函数有最大值还是最小值? 这个值是多少? 8.已知抛物线与 x轴交于点(1,0)和(2,0)且过点 (3,4), (1)求抛物线的解析式.(2)顶点坐标和对称轴;(3)画出函数图象 (4)x取什么值时,y随x的增大而增大;x取什么值时,y随x增大而减小. 9.已知函数 (1)用配方法将解析式化成顶点式。 (2)写出它的开口方向、对称轴和顶点坐标; (3)x取什么值时,y随x的增大而增大;x取什么值时,y随x增大而减小 (4)求出函数图象与坐标轴的交点坐标 10.阅读材料:当抛物线的解析式中含有字母系数时,随着系数中的字母取值的不同, 抛物线的顶点坐标也将发生变化. 例如:由抛物线①,有y=②,所以抛物线的顶点坐标为(m,2m-1),即当m的值变化时,x、y的值随之变化,因而y值也随x值的变化而变化,将③代人④,得y=2x—1⑤.可见,不论m取任何实数,抛物线顶点的纵坐标y和横坐标x都满足关系式y=2x-1,回答问题:(1)在上述过程中,由①到②所用的数学方法是________,其中运用了_________公式,由③④得到⑤所用的数学方法是______;(2)根据阅读材料提供的方法,确定抛物线顶点的纵坐标y与横坐标x之间的关系式 . 四:【课后小结】 布置作业 地纲 教后记
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传
相似文档                                   自信AI助手自信AI助手

当前位置:首页 > 教育专区 > 初中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服