资源描述
课 题
第七章 平面图形的认识(二)
课时分配
本课(章节)需 课时
本 节 课 为 第 课时
为 本 学期总第 课时
7.2探索平行线的性质
教学目标
掌握平行线的性质。
运用平行线的性质及判定方法解决问题
重 点
三条性质的推导
运用平行线的性质及判定方法解决问题
难 点
运用平行线的性质及判定方法解决问题时的过程
教学方法
讲练结合、探索交流
课型
新授课
教具
投影仪
教 师 活 动
学 生 活 动
情景设置:
1在练习本上画两条平行线AB、CD,再画直线MN与直线AB、CD相交如图 M
A 3 1 B
7 5
C 4 2 D
8 6
N
指出图中的同位角、内错角、同旁内角。
2将图剪成(1)(2)(3)(4)所示的四块。分别把图中的同位角、内错角重叠你会发现什么?
A 3 1 B (1)
A 7 5 B
C 4 2 D
(2) (3)
C 8 6 D
(4)
3将图(2)、 (3)分别剪成两部分,并按图中所示拼在一起,你发现每对同旁内角有什么关系?
7 4
7
4
5 2
5
2
由上可知
两直线平行,同位角相等
两直线平行,内错角相等
两直线平行,同旁内角互补
新课讲解:
议一议
你能根据“两直线平行,内错角相等”,说明“两直线平行,内错角相等”成立的理由吗? C
1 a
如图 3
因为a∥b, 2 b
所以∠1=∠2,
又因为∠1与∠3是对顶角,∠1=∠3,所以∠2=∠3。
类似地,请根据“两直线平行,同位角相等”,说明“两直线平行,同旁内角互补”成立的理由,并与学生交流。
例题1:
如图,AD∥BC,∠A=∠C试说明AB∥DC A D E
解:因为AD∥BC
所以∠C=∠CDE
又因为∠A=∠C F B C
所以∠A=∠CDE
根据“同位角相等,两直线平行:,
可以知道AB∥DC
练习:第14页练一练第1、2题
小结: 内错角相等
平行 同位角相等
同旁内角互补
教学素材:
A组题:
(1)在图中a∥b,计算∠1的度数分别为 , , 。
(2)如图若AB∥EF,BC∥DE,则∠E+∠B=
a 36° A F
b 1 1 1 B C
120° D E
B组题:
(1) 已知,如图,a∥b,c∥d, a b
∠1=48°,求∠2,∠3, 1 4
∠4的度数。 2 3
(2)如图,已知AB∥CD,∠B=120°,∠D=130°,求∠BDE的度数。
A B
F 1 E
2
C D
(2)
学生回答
由学生自己先做(或互相讨论),然后回答,若有答不全的,教师(或其他学生)补充.
学生板演
作业
第14页第1、2、3、4、题(5选做)
板 书 设 计
复习 例1 板演
…… …… ……
…… …… ……
…… 例2 ……
…… …… ……
…… …… ……
教 学 后 记
展开阅读全文