收藏 分销(赏)

八年级数学下册:6.1矩形(第2课时)教案(浙教版).doc

上传人:s4****5z 文档编号:7635760 上传时间:2025-01-10 格式:DOC 页数:3 大小:22.50KB 下载积分:10 金币
下载 相关 举报
八年级数学下册:6.1矩形(第2课时)教案(浙教版).doc_第1页
第1页 / 共3页
八年级数学下册:6.1矩形(第2课时)教案(浙教版).doc_第2页
第2页 / 共3页


点击查看更多>>
资源描述
6.1 矩 形 教学目标: 1、经历矩形的判定定理的发现过程; 2、掌握矩形的判定定理“有三个角是直角的四边形是矩形”; 3、掌握矩形的判定定理“对角线相等的平行四边形是矩形”。 教学重点和难点: 教学重点:矩形的判定 教学难点:判定定理“对角线相等的平行四边形是矩形”的证明。 教学过程: 一、复习引入 1、复习提问:矩形的对边有什么性质?角呢?对角线呢?(学生口答) 2、提问:要判断一个四边形是矩形目前我们有什么方法? 在学生的回答后,引入新课—6.2 矩形(2) 二、讲解新课 1、“合作学习” 提问:(1)命题“矩形的四个角都是直角”的逆命题是什么?是真命题还是假命题?要判定一个四边形四边形矩形只要说明几个角是直角?为什么? (2)工人师傅为了检验两组对边相等的四边形窗框是否成矩形,一种方法是量一量这个四边形的对角线是否相等。你知道这是为什么吗? 学生讨论回答,在学生回答后引导学生得出: 要判断一个四边形是不是矩形,除了利用矩形的定义外,还有以下两个定理: 定理1、有三个角是直角的四边形是矩形; 定理2、对角线相等的四边形是矩形。 2、矩形判断定理的证明 (1)证明定理1 教师做启发性提问: ①定理的条件是什么?结论是什么? ②在没有这个判定定理以前,我们要证明一个四边形是矩形,只能根据什么方法来证明? ③因此证明这个定理应该先证明什么?再证明什么? 教师在学生回答后,让学生自己独立的完成证明。 (2)证明定理2 教师对照右边的图形,写出已知、求证如下。 已知:在平行四边形ABCD在中,AC=BD; 求证:平行四边形ABCD是矩形 教师做启发性提问: ①条件是什么?结论是什么? ②要证明一个四边形是矩形,根据矩形的定义,只需证明什么? ③要证明有一个角是直角,根据相邻的两个角互补,只需要证明什么?于是就归结为证明怎样的两个三角形全等? ④如果选择要证明全等的两个三角形是△ABC和△DCB,它们已经满足哪些条件?这些条件能证明它们全等吗?根据是什么? 在学生回答后让学生口述证明过程,教师在指正的基础上同步板书,证明过程略。 3、讲解范例 例2、一张四边形的纸板ABCD的形状如图(1),它的两条对角线互相垂直。如果要从这张纸板中剪出一个矩形,并且使它的四个顶点分别落在四边形ABCD的四条边上,可以怎么剪? 教师引导学生利用三角形的中位线定理,分别取AB、BC、CD、DA的中点E、F、G、H,任何再利用三角形的中位线定理进行证明,证明过程略。 三、课堂练习 学生独立完成课本第136页的“课内练习”1、2两题的解题过程,第1小题让学生口答,再让一位学生板演第2题的证明过程,教师巡视指导,最后进行点评指正。 四、课堂小结 针对判定一个四边形是矩形的判定方法进行小结,特别指出要利用判定定理2进行判定时要具备两个条件: (1)这个四边形是平行四边形; (2)对角线要相等。 这两个条件缺一不可。 五、布置作业 见作业本 教学后记:
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传

当前位置:首页 > 教育专区 > 初中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服