1、3.8圆内接正多边形 教学目标 :知识目标:(1)掌握正多边形和圆的关系;(2)理解正多边形的中心、半径、中心角、边心距等概念;(3)能运用正多边形的知识解决圆的有关计算问题; (4)会运用多边形知和圆的有关知识画多边形.能力目标:学生在探讨正多边形和圆的关系学习中,体会到要善于发现问题、解决问题,培养学生的概括能力和实践能力.情感目标:通过学习,体验数学与生活的紧密相连;通过合作交流,探索实践培养学生的主体意识.教学重难点:教学重点:掌握正多边形的概念与正多边形和圆的关系,并能进行有关计算.教学难点:正多边形的半径、边心距及边长的计算问题转化为解直角三角形的问题.教学设计 :本节课设计了以下
2、教学环节: 情境引入、圆内接正多边形的概念、例题学习、尺规作图、练习与提高、课堂小结、布置作业.第一环节 情境引入活动内容:各小组 展示自己课前所调查得到的正多边形形状的物体 并解说从中获取的知识 (自然引出课题)第二环节 圆内接正多边形的概念活动内容:学习圆内接正多边形及有关概念顶点都在同一个圆上的正多边形叫做圆内接正多边形.这个圆叫做该正多边形的外接圆.把一个圆等分(),依次连接各分点,我们就可以作出一个圆内接正多边形.如图335,五边形是圆的内接正五边形,圆心叫做这个正五边形的中心;是这个正五边形的半径;是这个正五边形的中心角;,垂足为,是这个正五边形的的边心距.在其他的正多边形中也有同
3、样的定义.活动目的:让学生了解有关正多边形的概念,引导学生逐步深入的学习.第三环节 例题学习活动内容:例:如图336,在圆内接正六边形中,半径,垂足为,求这个正六边形的中心角、边长和边心距.解:连接 六边形为正六边形为等边三角形.在中,正六边形中心角为,边长为4,边心距为.活动目的:题目是有关正多边形的计算的具体应用,通过例题的学习,巩固有关正多边形的概念,能运用正多边形的知识解决圆的有关计算问题.第四环节 尺规作图活动内容:1、用尺规作一个已知圆的内接正六边形. 2、用尺规作一个已知圆的内接正四边形. 3、思考:作正多边形有哪些方法? 第五环节 练习与提高分别求出半径为6的圆内接正三角形的边长和边心距.第六环节 课堂小结师生互相交流总结正多边形和圆的关系、正多边形的对称性和边数相同的正多边形相似的性质、正多边形的中心、半径、中心角、边心距等概念、如何计算正多边形的半径、边心距及边长,社会调查时学到的课外知识及切身感受等. 第七环节 布置作业