1、26.3实际问题与二次函数教学目标:1、知识与技能:经历数学建模的基本过程。2、方法与技能:会运用二次函数求实际问题中的最大值或最小值。3、情感、态度与价值观:体会二次函数是一类最优化问题的重要数学模型,感受数学的应用价值。教学重点和难点:重点:二次函数在最优化问题中的应用。难点:例1是从现实问题中建立二次函数模型,学生较难理解。教学设计:一、创设情境、提出问题给你长8m的铝合金条,设问:你能用它制成一矩形窗框吗?怎样设计,窗框的透光面积最大?如何验证?二、观察分析,研究问题探究一:某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每涨价1元,每星期少卖出10件;每降价1元,每
2、星期可多卖出20件,已知商品的进价为每件40元,如何定价才能使利润最大?(1)题目中有几种调整价格的方法? (2)题目涉及到哪些变量?哪一个量是自变量?哪些量随之发生了变化?分析: 调整价格包括涨价和降价两种情况先来看涨价的情况:设每件涨价x元,则每星期售出商品的利润y也随之变化,我们先来确定y与x的函数关系式。涨价x元时则每星期少卖 件,实际卖出 件,销额为 元,买进商品需付 元因此,所得利润为元即:y=-10x2+100x+6000 (0X30)所以,当定价为65元时,利润最大,最大利润为6250元可以看出,这个函数的图像是一条抛物线的一部分,这条抛物线的顶点是函数图像的最高点,也就是说当
3、x取顶点坐标的横坐标时,这个函数有最大值。由公式可以求出顶点的横坐标.小结:解这类问题一般的步骤:(1)列出二次函数的解析式,并根据自变量的实际意义,确定自变量的取值范围;(2)在自变量的取值范围内,运用公式法或通过配方求出二次函数的最大值或最小值。三、例练应用,解决问题设问:用长为8m的铝合金条制成如图形状的矩形窗框,问窗框的宽和高各是多少米时,窗户的透光面积最大?最大面积是多少?引导学生分析,板书解题过程。变式(即课本例1):现在用长为8米的铝合金条制成如图所示的窗框(把矩形的窗框改为上部分是由4个全等扇形组成的半圆,下部分是矩形),那么如何设计使窗框的透光面积最大?(结果精确到0.01米)四、知识整理,形成系统1、这节课学习了用什么知识解决哪类问题?2、解决问题的一般步骤是什么?应注意哪些问题?3、学到了哪些思考问题的方法?五、布置作业: