1、第2课时 有理数乘法的运算律【知识与技能】掌握有理数乘法的运算律,并利用运算律简化乘法运算.【过程与方法】经历探索有理数乘法运算律的过程,发展学生观察、归纳、猜测、验证等能力.【情感态度】结合本课教学特点,向学生进行热爱生活、热爱学习教育,培养学生观察、归纳、概括及运算能力.【教学重点】乘法的运算律.【教学难点】利用运算律简化乘法运算.一、情境导入,初步认识在有理数运算中,加法的交换律、结合律仍然成立.那么乘法的交换律、结合律以及乘法对加法的分配律还成立吗?【教学说明】 学生已经知道加法的交换律、结合律在有理数运算中仍然成立,很容易猜想乘法的交换律、结合律、分配律也会成立,激发学生探求新知识的
2、欲望.二、思考探究,获取新知1.有理数乘法的运算律问题1计算下列各题,并比较它们的结果.【教学说明】 学生通过观察、分析、计算,与同伴交流,归纳有理数乘法的运算律.【归纳结论】乘法交换律:两个有理数相乘、交换因数的位置,积相等,即ab=ba.乘法结合律:三个有理数相乘,先把前面两个数相乘,或者先把后面两个数相乘,积相等,即(ab)c=a(bc).乘法分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加,即a(b+c)=ab+ac.注意:同加法的运算律一样,这里的a、b、c表示任意三个有理数.2.运算乘法的运算律进行计算问题2计算:【教学说明】 学生通过计算、交流,进一步掌
3、握乘法的运算律.问题3 计算:【教学说明】 学生通过计算,与同伴进行交流,熟练地运用乘法的运算律.【归纳结论】运用乘法的交换律和结合律时,一般把互为倒数的因数,便于约分的因数,积为正或末尾产生0的因数先结合起来相乘;运用乘法分配律时,不仅要注意把乘积形式a(b+c)转化为ab+ac,也要注意有时候逆用(即把ab+ac转化为a(b+c))会使运算简便.另外把一个数拆成两个数,再运用分配律也是一种非常重要的方法.注意:在计算时要注意符号问题.3.其他一些简算技巧问题4观察下列各式:用你发现的规律计算:【教学说明】 学生通过观察、分析、思考找出规律,再进行计算,进一步掌握一些简算技巧.【归纳结论】有
4、时利用发现的规律也能使运算简便.三、运用新知,深化理解1.5(-6)=(-6)5运用的是乘法的 律,(-3)2(-5)=-32(-5)运用的是乘法的 律.2.计算(-4)(-91)(-25)可用乘法的 律和 律转化成(-91)(-4)(-25),结果是 .4.计算:5.已知:1+2+3+4+33=1733.计算:1-3+2-6+3-9+4-12+31-93+32-96+33-99的值.【教学说明】 学生自主完成,加深对新学知识的理解,检测对有理数乘法运算律的掌握情况,对学生的疑惑教师应及时指导.完成上述题目后,教师引导学生完成练习册中本课时练习的课堂作业部分.【答案】1.交换,结合2.交换,结
5、合,-91005.原式=1+2+3+33-3-6-9-96-99=1733-3(1+2+3+33)=1733-31733=1733(1-3)=1733(-2)=-1122四、师生互动,课堂小结1.师生共同回顾有理数乘法的运算律.2.通过这节课的学习,你掌握了哪些新知识,还有哪些疑问?【教学说明】 教师引导学生回顾知识点,让学生大胆发言,积极与同伴交流,加深对有理数乘法运算律的理解与运用.【板书设计】1.布置作业:从教材“习题2.11”中选取.2.完成练习册中本课时的相应作业.本节课从学生感受乘法的运算律对于有理数仍然成立,到运用乘法的运算律进行计算,提高了学生的运算能力,对于有疑问的学生还需加强指导.