1、 二次函数的图象与性质(1) 二次函数y=ax2的图象与性质【教学目标】1、使学生会用描点法画出y=ax2的图象,理解抛物线的有关概念;2、使学生经历、探索二次函数y=ax2图象性质的过程,培养学生观察、思考、归纳的良好思维习惯。【重点难点】重点:使学生理解抛物线的有关概念,会用描点法画出二次函数y=ax2的图象是教学的重点。难点:用描点法画出二次函数y=ax2的图象以及探索二次函数性质是教学的难点。【教学过程】一、提出问题1,同学们可以回想一下,一次函数的性质是如何研究的?(先画出一次函数的图象,然后观察、分析、归纳得到一次函数的性质)2我们能否类比研究一次函数性质方法来研究二次函数的性质呢
2、?如果可以,应先研究什么?(可以用研究一次函数性质的方法来研究二次函数的性质,应先研究二次函数的图象)3一次函数的图象是什么?二次函数的图象是什么?二、范例例1、画二次函数y=x2的图象。解:(1)列表:在x的取值范围内列出函数对应值表:(2)在直角坐标系中描点:用表里各组对应值作为点的坐标,在平面直角坐标系中描点(3)连线:用光滑的曲线顺次连结各点,得到函数y=x2的图象,如图所示。提问:观察这个函数的图象,它有什么特点?(让学生观察,思考、讨论、交流,归结为:它有一条对称轴,且对称轴和图象有一点交点。)抛物线概念:像这样的曲线通常叫做抛物线。顶点概念:抛物线与它的对称轴的交点叫做抛物线的顶
3、点三、做一做1在同一直角坐标系中,画出函数y=x2与y=-x2的图象,观察并比较两个图象,你发现有什么共同点?又有什么区别?2在同一直角坐标系中,画出函数y=2x2与y=-2x2的图象,观察并比较这两个函数的图象,你能发现什么?3将所画的四个函数的图象作比较,你又能发现什么?(教师可引导学生从1的共同点和2的发现中得到结论:四个函数的图象都是抛物线,都关于y轴对称,它的顶点坐标都是(0,0))四、归纳、概括1函数yx2、y=-x2、y=2x2、y=-2x2是函数y=ax2的特例,由函数yx2、y=-x2、y2x2、y=-2x2的图象的共同特点,可猜想:函数y=ax2的图象是一条_,它关于_对称
4、,它的顶点坐标是_。2如果要更细致地研究函数y=ax2图象的特点和性质,应如何分类?为什么?让学生观察yx2、y2x2的图象,填空;当a0时,抛物线y=ax2开口_,在对称轴的左边,曲线自左向右_;在对称轴的右边,曲线自左向右_,_是抛物线上位置最低的点。3图象的这些特点反映了函数的什么性质?先让学生观察图象,回答以下问题:当x0时,函数值y随x的增大而_;当x_时,函数值y=ax2 (a0)取得最小值,最小值y=_以上结论就是当a0时,函数y=ax2的性质。思考以下问题:观察函数y-x2、y=-2x2的图象,试作出类似的概括,当a0时,抛物线yax2有些什么特点?它反映了当a0时,函数y=ax2具有哪些性质?五、课堂练习P7练习1、2、3、4。六、作业1如何画出函数y=ax2的图象; 2函数yax2具有哪些性质?【课后反思】