1、262 二次函数的图象与性质教学目标:1、会用描点法画出二次函数的图象,能通过图象和关系式认识二次函数的性质2、会运用配方法确定二次函数图象的顶点、开口方向和对称轴重点:二次函数的图象与性质难点:二次函数的图象与性质本节知识点1能通过配方把二次函数化成+k的形式,从而确定开口方向、对称轴和顶点坐标;2会利用对称性画出二次函数的图象教学过程我们已经发现,二次函数的图象,可以由函数的图象先向 平移 个单位,再向 平移 个单位得到,因此,可以直接得出:函数的开口 ,对称轴是 ,顶点坐标是 那么,对于任意一个二次函数,如,你能很容易地说出它的开口方向、对称轴和顶点坐标,并画出图象吗?实践与探索例1通过
2、配方,确定抛物线的开口方向、对称轴和顶点坐标,再描点画图解 因此,抛物线开口向下,对称轴是直线x=1,顶点坐标为(1,8)由对称性列表:x-2-101234-1006860-10描点、连线,如图2627所示回顾与反思 (1)列表时选值,应以对称轴x=1为中心,函数值可由对称性得到,(2)描点画图时,要根据已知抛物线的特点,一般先找出顶点,并用虚线画对称轴,然后再对称描点,最后用平滑曲线顺次连结各点探索 对于二次函数,你能用配方法求出它的对称轴和顶点坐标吗?请你完成填空:对称轴 ,顶点坐标 例2已知抛物线的顶点在坐标轴上,求的值分析 顶点在坐标轴上有两种可能:(1)顶点在x轴上,则顶点的纵坐标等
3、于0;(2)顶点在y轴上,则顶点的横坐标等于0解 ,则抛物线的顶点坐标是当顶点在x轴上时,有 ,解得 当顶点在y轴上时,有 ,解得 或所以,当抛物线的顶点在坐标轴上时,有三个值,分别是 2,4,8当堂课内练习1(1)二次函数的对称轴是 (2)二次函数的图象的顶点是 ,当x 时,y随x的增大而减小(3)抛物线的顶点横坐标是-2,则= 2抛物线的顶点是,则、c的值是多少?本课课外作业A组1已知抛物线,求出它的对称轴和顶点坐标,并画出函数的图象2利用配方法,把下列函数写成+k的形式,并写出它们的图象的开口方向、对称轴和顶点坐标(1)(2)(3) (4)3已知是二次函数,且当时,y随x的增大而增大(1)求k的值;(2)求开口方向、顶点坐标和对称轴 B组4当时,求抛物线的顶点所在的象限5. 已知抛物线的顶点A在直线上,求抛物线的顶点坐标课堂小结:教学反思: