1、课题: 23.2 中心对称(2)设计人:授课人:设计时间:授课时间:教学设计授课备注23.2 中心对称(2)第二课时 教学内容 1关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分 2关于中心对称的两个图形是全等图形 教学目标 理解关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分;理解关于中心对称的两个图形是全等图形;掌握这两个性质的运用 复习中心对称的基本概念(中心对称、对称中心,关于中心的对称点),提出问题,让学生分组讨论解决问题,老师引导总结中心对称的基本性质 重难点、关键 1重点:中心对称的两条基本性质及其运用 2难点与关键:让学生合作
2、讨论,得出中心对称的两条基本性质 教学过程 一、复习引入 (老师口问,学生口答) 1什么叫中心对称?什么叫对称中心? 2什么叫关于中心的对称点? 3请同学随便画一三角形,以三角形一顶点为对称中心,画出这个三角形关于这个对称中心的对称图形,并分组讨论能得到什么结论 (每组推荐一人上台陈述,老师点评) (老师)在黑板上画一个三角形ABC,分两种情况作两个图形 (1)作ABC一顶点为对称中心的对称图形; (2)作关于一定点O为对称中心的对称图形 第一步,画出ABC第二步,以ABC的C点(或O点)为中心,旋转180画出AB和ABC,如图1和用2所示 (1) (2) 从图1中可以得出ABC与ABC是全等
3、三角形; 分别连接对称点AA、BB、CC,点O在这些线段上且O平分这些线段 下面,我们就以图2为例来证明这两个结论 证明:(1)在ABC和ABC中, OA=OA,OB=OB,AOB=AOB AOBAOB AB=AB 同理可证:AC=AC,BC=BC ABCABC (2)点A是点A绕点O旋转180后得到的,即线段OA绕点O旋转180得到线段OA,所以点O在线段AA上,且OA=OA,即点O是线段AA的中点 同样地,点O也在线段BB和CC上,且OB=OB,OC=OC,即点O是BB和CC的中点 因此,我们就得到 1关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分 2关于中心对
4、称的两个图形是全等图形例1如图,已知ABC和点O,画出DEF,使DEF和ABC关于点O成中心对称 分析:中心对称就是旋转180,关于点O成中心对称就是绕O旋转180,因此,我们连AO、BO、CO并延长,取与它们相等的线段即可得到解:(1)连结AO并延长AO到D,使OD=OA,于是得到点A的对称点D,如图所示 (2)同样画出点B和点C的对称点E和F (3)顺次连结DE、EF、FD则DEF即为所求的三角形例2(学生练习,老师点评)如图,已知四边形ABCD和点O,画四边形ABCD,使四边形ABCD和四边形ABCD关于点O成中心对称(只保留作图痕迹,不要求写出作法) 二、巩固练习 教材P70 练习 三
5、、应用拓展例3如图等边ABC内有一点O,试说明:OA+OBOC 分析:要证明OA+OBOC,必然把OA、OB、OC转为在一个三角形内,应用两边之和大于第三边(两点之间线段最短)来说明,因此要应用旋转以A为旋转中心,旋转60,便可把OA、OB、OC转化为一个三角形内解:如图,把AOC以A为旋转中心顺时针方向旋转60后,到AOB的位置,则AOCAOB AO=AO,OC=OB 又OAO=60,AOO为等边三角形 AO=OO 在BOO中,OO+OBBO 即OA+OBOC 四、归纳小结(学生总结,老师点评) 本节课应掌握: 中心对称的两条基本性质: 1关于中心对称的两个图形,对应点所连线都经过对称中心,
6、而且被对称中心所平分; 2关于中心对称的两个图形是全等图形及其它们的应用 五、布置作业 1教材P74 复习巩固1 综合运用6、7 2选作课时作业设计第二课时作业设计 一、选择题 1下面图形中既是轴对称图形又是中心对称图形的是( ) A直角 B等边三角形 C直角梯形 D两条相交直线 2下列命题中真命题是( ) A两个等腰三角形一定全等 B正多边形的每一个内角的度数随边数增多而减少 C菱形既是中心对称图形,又是轴对称图形 D两直线平行,同旁内角相等 3将矩形ABCD沿AE折叠,得到如图的所示的图形,已知CED=60,则AED的大小是( )A60 B50 C75 D55 二、填空题 1关于中心对称的
7、两个图形,对称点所连线段都经过_,而且被对称中心所_ 2关于中心对称的两个图形是_图形 3线段既是轴对称图形又是中心对称图形,它的对称轴是_,它的对称中心是_ 三、综合提高题 1分别画出与已知四边形ABCD成中心对称的四边形,使它们满足以下条件:(1)以顶点A为对称中心,(2)以BC边的中点K为对称中心2如图,已知一个圆和点O,画一个圆,使它与已知圆关于点O成中心对称 3如图,A、B、C是新建的三个居民小区,我们已经在到三个小区距离相等的地方修建了一所学校M,现计划修建居民小区D,其要求:(1)到学校的距离与其它小区到学校的距离相等;(2)控制人口密度,有利于生态环境建设,试写居民小区D的位置 答案: 一、1D 2C 3A 二、1对称中心 平分 2全等 3线段中垂线,线段中点 三、1略 2作出已知圆圆心关于O点的对称点O,以O为圆心,已知圆的半径为半径作圆 3连结AB、AC,分别作AB、AC的中垂线PQ、GH相交于M,学校M所在位置,就是ABC外接圆的圆心,小区D是在劣弧BC的中点即满足题意