收藏 分销(赏)

八年级数学下册 第十七章 勾股定理 17.2 勾股定理的逆定理教案 (新版)新人教版-(新版)新人教版初中八年级下册数学教案.docx

上传人:s4****5z 文档编号:7630480 上传时间:2025-01-10 格式:DOCX 页数:10 大小:31.84KB
下载 相关 举报
八年级数学下册 第十七章 勾股定理 17.2 勾股定理的逆定理教案 (新版)新人教版-(新版)新人教版初中八年级下册数学教案.docx_第1页
第1页 / 共10页
八年级数学下册 第十七章 勾股定理 17.2 勾股定理的逆定理教案 (新版)新人教版-(新版)新人教版初中八年级下册数学教案.docx_第2页
第2页 / 共10页
八年级数学下册 第十七章 勾股定理 17.2 勾股定理的逆定理教案 (新版)新人教版-(新版)新人教版初中八年级下册数学教案.docx_第3页
第3页 / 共10页
八年级数学下册 第十七章 勾股定理 17.2 勾股定理的逆定理教案 (新版)新人教版-(新版)新人教版初中八年级下册数学教案.docx_第4页
第4页 / 共10页
八年级数学下册 第十七章 勾股定理 17.2 勾股定理的逆定理教案 (新版)新人教版-(新版)新人教版初中八年级下册数学教案.docx_第5页
第5页 / 共10页
点击查看更多>>
资源描述

1、17.2 勾股定理的逆定理(1)教学目标一、知识与技能1掌握直角三角形的判别条件2熟记一些勾股数3掌握勾股定理的逆定理的探究方法二、过程与方法1用三边的数量关系来判断一个三角形是否为直角三角形,培养学生数形结合的思想2通过对直角三角形判别条件的研究,培养学生大胆猜想,勇于探索的创新精神三、情感态度与价值观1通过介绍有关历史资料,激发学生解决问题的愿望2通过对勾股定理的逆定理的探究;培养学生学习数学的兴趣和创新精神教学重点探究勾股定理的逆定理,理解互逆命题,原命题、逆命题的有关概念及关系教学难点归纳、猜想出命题2的结论教具准备多媒体课件教学过程一、创设问题情境,引入新课活动1 (1)总结直角三角

2、形有哪些性质 (2)一个三角形,满足什么条件是直角三角形?设计意图:通过对前面所学知识的归纳总结,联想到用三边的关系是否可以判断一个三角形为直角三角形,提高学生发现反思问题的能力师生行为:学生分组讨论,交流总结;教师引导学生回忆本活动,教师应重点关注学生:能否积极主动地回忆,总结前面学过的旧知识;能否“温故知新”生:直角三角形有如下性质:(1)有一个角是直角;(2)两个锐角互余,(3)两直角边的平方和等于斜边的平方: (4)在含30角的直角三角形中,30的角所对的直角边是斜边的一半师:那么,一个三角形满足什么条件,才能是直角三角形呢?生:有一个内角是90,那么这个三角形就为直角三角形生:如果一

3、个三角形,有两个角的和是90,那么这个三角形也是直角三角形师:前面我们刚学习了勾股定理,知道一个直角三角形的两直角边a,b,斜边c具有一定的数量关系即a2b2c2,我们是否可以不用角,而用三角形三边的关系来判定它是否为直角三角形呢?我们来看一下古埃及人如何做?二、讲授新课活动2 问题:据说古埃及人用下图的方法画直角:把一根长蝇打上等距离的13个结,然后以3个结,4个结、5个结的长度为边长,用木桩钉成一个三角形,其中一个角便是直角这个问题意味着,如果围成的三角形的三边分别为3、4、5有下面的关系“324252”那么围成的三角形是直角三角形画画看,如果三角形的三边长分别为2.5cm,6cm,6.5

4、cm,有下面的关系,“2.52626.52,画出的三角形是直角三角形吗?换成三边长分别为4cm、7.5cm、8.5cm再试一试设计意图:由特殊到一般,归纳猜想出“如果三角形三边a,b,c满足a2b2c2,那么这个三角形就为直角三角形的结论,培养学生动手操作能力和寻求解决数学问题的一般方法师生行为让学生在小组内共同合作,协手完成此活动教师参与此活动,并给学生以提示、启发在本活动中,教师应重点关注学生:能否积极动手参与能否从操作活动中,用数学语言归纳、猜想出结论学生是否有克服困难的勇气生:我们不难发现上图中,第(1)个结到第(4)个结是3个单位长度即AC3;同理BC4,AB5因为324252我们围

5、成的三角形是直角三角形生:如果三角形的三边分别是2.5cm,6cm,6.5cm我们用尺规作图的方法作此三角形,经过测量后,发现6.5cm的边所对的角是直角,并且2.52626.52再换成三边分别为4cm,7.5cm,8.5cm的三角形,目标可以发现8.5cm的边所对的角是直角,且也有427.528.52是不是三角形的三边只要有两边的平方和等于第三边的平方,就能得到一个直角三角形呢?活动3 下面的三组数分别是一个三角形的三边长a,b,c 5,12,13;7,24,25;8,15,17 (1)这三组数都满足a2b2c2吗? (2)分别以每组数为三边长作出三角形,用量角器量一量,它们都是直角三角形吗

6、?设计意图:本活动通过让学生按已知数据作出三角形,并测量三角形三个内角的度数来进一步获得一个三角形是直角三角形的有关边的条件师生行为:学生进一步以小组为单位,按给出的三组数作出三角形,从而更加坚信前面猜想出的结论.教师对学生归纳出的结论应给予解释,我们将在下一节给出证明本活动教师应重点关注学生:对猜想出的结论是否还有疑虑能否积极主动的操作,并且很有耐心生:(1)这三组数都满足a2b2c2(2)以每组数为边作出的三角形都是直角三角形师:很好,我们进一步通过实际操作,猜想结论命题2 如果三角形的三边长a,b,c满足a2b2c2那么这个三角形是直角三角形同时,我们也进一步明白了古埃及人那样做的道理实

7、际上,古代中国人也曾利用相似的方法得到直角直至科技发达的今天人类已跨人21世纪,建筑工地上的工人师傅们仍然离不开“三四五放线法” “三四五放线法”是一种古老的归方操作所谓“归方”就是“做成直角”。譬如建造房屋,房角一般总是成90,怎样确定房角的纵横两线呢?如下图,欲过基线MN上的一点C作它的垂线,可由三名工人操作:一人手拿布尺或测绳的0和12尺处,固定在C点;另一人拿4尺处,把尺拉直,在MN上定出A点,再由一人拿9尺处,把尺拉直,定出B点,于是连结BC,就是MN的垂线建筑工人用了3,4,5作出了一个直角,能不能用其他的整数组作出直角呢?生:可以,例如7,24,25;8,15,17等据说,我国古

8、代大禹治水测量工程时,也用类似的方法确定直角活动4 问题:命题1 如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2b2c2命题2 如果三角形的三边长分别为a,b,c,满足a2b2c2那么这个三角形是直角三角形它们的题设和结论各有何关系?设计意图:认识什么样的两个命题是互逆命题,明白什么是原命题,什么是逆命题?你前面遇到过有互逆命题吗?师生行为:学生阅读课本,并回忆前面学过的一些命题教师认真倾听学生的分析教师在本活动中应重点关注学生;能否发现互逆命题的题设和结论之间的关系能否积极主动地回忆我们前面学过的互逆命题生:我们可以看到命题2与命题1的题设结论正好相反,我们把像这样的两个命题叫

9、做互逆命题如果把其中的一个叫做原命题,那么另一个叫做它的逆命题例如把命题1当成原命题,那么命题2是命题1的逆命题生:我们前面学过平行线的性质和判定其中“两直线平行,同位角相等”和“同位角相等,两直线平行”是互逆命题“两直线平行,内错角相等”和“内错角相等,两直线平行”也是互逆命题生:“两直线平行,同旁内角互补”和“同旁内角互补,两直线平行”也是互逆命题三、课时小结活动5问题:你对本节内容有哪些认识?设计意图:这种形式的小结,激发了学生的主动参与意识,调动了学生的学习兴趣,为每一位学生都创造了在数学学习活动中获得成功体验的机会,并为程度不同的学生提供了充分展示自己的机会,尊重学生的个体差异,满足

10、学生多极化学习的需要师生行为:教师课前准备卡片,卡片上写出三个数,让学生随意抽出,判断以这三个数为边的三角形能否构成直角三角形在活动5中,教师应重点关注学生:(1)不同层次的学生对本节的认知程度(2)学生再谈收获是对不同方面的感受(3)学生独立面对困难和克服困难的能力17.2 勾股定理的逆定理(2) 一、 内容及其分析 本节课学习的主要内容是用勾股定理及逆定理解决实际问题。进一步加深性质定理与判定定理之间关系的认识。二、 目标及其解析目标定位:灵活应用勾股定理及逆定理解决实际问题。目标解析:应用勾股定理及逆定理解决实际问题。勾股定理及其逆定理是我们解直角三角形的重要方法,所以要让学生养成利用勾

11、股定理的逆定理解决实际问题的意识。三、 问题诊断与分析学生可能不大理解方位角,方位词,所以要根据题目意思来画图分析可能有些难度,大多数同学可能画不出图形,更不会用勾股定理的逆定理来解决,但在军事和航海上经常要确定方向和位置,从而使用一些数学知识和数学方法。四、 教学支持条件分析板书教学。要让学生体会如何根据题目的方位角和方位词画出正确的图形,运用勾股定理及其逆定理来解决实际问题。五、 教学过程问题与例题:问题一 判断由线段a,b,c组成的三角形是不是直角三角形:(1) a=15,b=8,c=17;(2) a=13,b=14,c=15.意图分析:根据勾股定理的逆定理,判断一个三角形是不是直角三角

12、形,只要看两条较小边长的平方和是否等于最大边长的和。问题二 某港口位于东西方向的海岸线上。“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里。它们离开港口一个半小时后相距30海里。如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗?设计意图: 了解方位角及方位名词; 依题意画出图形; 依题意可得PR=121.5=18,PQ=161.5=24,QR=30; 因为242+182=302,PQ2+PR2=QR2,根据勾股定理的逆定理,知QPR=90; PRS=QPR-QPS=45。 让学生养成“已知三边求角,利用勾

13、股定理的逆定理”的意识。问题三 (补充例题)一根30米长的细绳折成3段,围成一个三角形,其中一条边的长度比较短边长7米,比较长边短1米,请你试判断这个三角形的形状。设计意图: 若判断三角形的形状,先求三角形的三边长; 设未知数列方程,求出三角形的三边长5、12、13; 根据勾股定理的逆定理,由52+122=132,知三角形为直角三角形。六、 课堂小结1、 常见的方位角和方位词。2、 会根据方位提示正确作图。3、利用方程思想解决问题,进一步养成利用勾股定理的逆定理解决实际问题的意识。七、 目标检测1.小强在操场上向东走80m后,又走了60m,再走100m回到原地。小强在操场上向东走了80m后,又

14、走60m的方向是 。2.如图,在操场上竖直立着一根长为2米的测影竿,早晨测得它的影长为4米,中午测得它的影长为1米,则A、B、C三点能否构成直角三角形?为什么?八、 配餐作业A组:1一根长24米的绳子,折成三边为三个连续偶数的三角形,则三边长分别为 ,此三角形的形状为 。2一根12米的电线杆AB,用铁丝AC、AD固定,现已知用去铁丝AC=15米,AD=13米,又测得地面上B、C两点之间的距离是9米,B、D两点之间的距离是5米,则电线杆和地面是否垂直,为什么?B组:如图,在我国沿海有一艘不明国籍的轮船进入我国海域,我海军甲、乙两艘巡逻艇立即从相距13海里的A、B两个基地前去拦截,六分钟后同时到达C地将其拦截。已知甲巡逻艇每小时航行120海里,乙巡逻艇每小时航行50海里,航向为北偏西40,问:甲巡逻艇的航向?C组:如图,小明的爸爸在鱼池边开了一块四边形土地种了一些蔬菜,爸爸让小明计算一下土地的面积,以便计算一下产量。小明找了一卷米尺,测得AB=4米,BC=3米,CD=13米,DA=12米,又已知B=90。九、课后反思

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
  • 八年级数学下册 第十七章 勾股定理 17.2 勾股定理的逆定理教案 (新版)新人教版-(新版)新人教版初中八年级下册数学教案.doc八年级数学下册 第十七章 勾股定理 17.2 勾股定理的逆定理教案 (新版)新人教版-(新版)新人教版初中八年级下册数学教案.doc
  • 春八年级数学下册 第十七章 勾股定理 17.2 勾股定理的逆定理 第1课时 勾股定理的逆定理教案 (新版)新人教版-(新版)新人教版初中八年级下册数学教案.doc春八年级数学下册 第十七章 勾股定理 17.2 勾股定理的逆定理 第1课时 勾股定理的逆定理教案 (新版)新人教版-(新版)新人教版初中八年级下册数学教案.doc
  • 春八年级数学下册 第十七章 勾股定理 17.2 勾股定理的逆定理 第2课时 勾股定理的逆定理的应用教案 (新版)新人教版-(新版)新人教版初中八年级下册数学教案.doc春八年级数学下册 第十七章 勾股定理 17.2 勾股定理的逆定理 第2课时 勾股定理的逆定理的应用教案 (新版)新人教版-(新版)新人教版初中八年级下册数学教案.doc
  • 八年级数学下册-第十七章-勾股定理17.2-勾股定理的逆定理教案-新人教版.doc八年级数学下册-第十七章-勾股定理17.2-勾股定理的逆定理教案-新人教版.doc
  • 八年级数学下册 第十七章 勾股定理 17.1 勾股定理教案 (新版)新人教版-(新版)新人教版初中八年级下册数学教案.doc八年级数学下册 第十七章 勾股定理 17.1 勾股定理教案 (新版)新人教版-(新版)新人教版初中八年级下册数学教案.doc
  • 春八年级数学下册 第17章 勾股定理 17.2 勾股定理的逆定理教案 (新版)新人教版-(新版)新人教版初中八年级下册数学教案.docx春八年级数学下册 第17章 勾股定理 17.2 勾股定理的逆定理教案 (新版)新人教版-(新版)新人教版初中八年级下册数学教案.docx
  • 春八年级数学下册 第17章 勾股定理 17.2 勾股定理的逆定理教案 (新版)新人教版-(新版)新人教版初中八年级下册数学教案.doc春八年级数学下册 第17章 勾股定理 17.2 勾股定理的逆定理教案 (新版)新人教版-(新版)新人教版初中八年级下册数学教案.doc
  • 湖北省武汉市八年级数学下册 第十七章 勾股定理 17.2 勾股定理的逆定理教学设计 (新版)新人教版-(新版)新人教版初中八年级下册数学教案.doc湖北省武汉市八年级数学下册 第十七章 勾股定理 17.2 勾股定理的逆定理教学设计 (新版)新人教版-(新版)新人教版初中八年级下册数学教案.doc
  • 春八年级数学下册 第十七章 勾股定理 17.1 勾股定理 第1课时 勾股定理教案 (新版)新人教版-(新版)新人教版初中八年级下册数学教案.doc春八年级数学下册 第十七章 勾股定理 17.1 勾股定理 第1课时 勾股定理教案 (新版)新人教版-(新版)新人教版初中八年级下册数学教案.doc
  • 八年级数学下册 17.2 勾股定理的逆定理(1)教案 (新版)新人教版-(新版)新人教版初中八年级下册数学教案.doc八年级数学下册 17.2 勾股定理的逆定理(1)教案 (新版)新人教版-(新版)新人教版初中八年级下册数学教案.doc
  • 搜索标签

    当前位置:首页 > 教育专区 > 初中数学

    移动网页_全站_页脚广告1

    关于我们      便捷服务       自信AI       AI导航        获赠5币

    ©2010-2025 宁波自信网络信息技术有限公司  版权所有

    客服电话:4008-655-100  投诉/维权电话:4009-655-100

    gongan.png浙公网安备33021202000488号   

    icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

    关注我们 :gzh.png    weibo.png    LOFTER.png 

    客服