1、福建省泉州市泉港三川中学九年级数学上册24.2 相似图形的特征教案 华东师大版教学目标 :1、了解成比例线段的意义,会判断四条线段是否成比例。 2、利用比例的性质,会求出未知线段的长。教学过程:一、复习引入 挂上两张中国地图,问: 1这两个图形有什么联系? 它们都是平面图形,它们的形状相同,大小不相同,是相似形。2这两个图形是相似图形,为什么有些图形是相似的,而有的图形看起来相像又不会相似呢?相似的两个图形有什么主要特征呢?为了探究相似图形的特征,本节课先学习线段的成比例。二、新课 先从这两张相似的地图上研究。 1成比例线段: 请一位同学在地图上找出北京、上海、福州的位置,如果我们用A、B、C
2、分别表示大地图上的北京、上海、福州的位置,请用刻度尺在地图上量一量北京到上海的直线距离,即线段ABcm,上海到福州的直线距离,即线段BCcm,在小地图上用A、B、C、分别表示北京、上海、福州的位置,也量一量ABcm,BCcm。在地图上量出的AB与AB,BC与BC长度是否相等?为什么会不一样呢?线段AB与AB,BC与BC有什么关系呢?请同学们算一算它们两线段的长度的比,即AB:AB,BC:BC会有什么样的结果呢?我们会得到AB与AB这两条线段的比与BC,BC这两条线段的比是相等的,即。 对于四条线段a、b、c、d,如果其中两条线段的长度的比与另两条线段的长度的比相等,即,那么,这四条线段叫做成比
3、例线段,简称比例线段。 若线段a、b、c、d成比例,即a:bc:d,那么其内项乘积等于外项乘积。a dbc,其他的比例性质也都适用。 上面地图中AB、AB、BC、BC这四条线段就是成比例线段,实际上两张相似的地图中的对应线段都是成比例的,同学们不妨再量一量北京到福州的距离,即AC与AC,然后再算AC;AC,看看是否成比例。如果,那会出现什么情况? 如果那么b叫做a、c的比例中项,也可以写成b2ac 例1:在比例尺为1:400000地图上,量得甲、乙两地的距离为15厘米,求甲、 乙两地的实际距离。 例2:线段a15厘米,b20厘米,c75毫米,d0.1米,求: 与,这四条线段会成比例吗?例3:如
4、图AB21,AD15,CE40,并且,求AC的长。三、练习1(1)根据图示求线段比、 (2)指出图中成比例的线段。 2、等腰三角形两腰的比是多少?等腰三角形的腰与底边的比是多少?四、小结同学回忆 1、什么样的线段成比例线段? 2、线段成比例与线段比有什么区别? 3、比例有哪些性质?第二课时相似图形的特征(二)教学目标:知道相似图形的两个特征:对应边成比例,对应角相等。识别两个多边形是否相似的方法。 教学过程:一、复习 1若线段a6cm,b4cm,c3.6cm,d2.4cm,那么线段a、b,c、d会成比例吗?2两张相似的地图中的对应线段有什么关系?(都成比例)二、新课 相似的两张地图中的对应线段
5、都会成比例,对于一般的相似多边形,这个结论是否成立呢?同学们动手量一量,算一算,用刻度尺和量角器量一量课本第页两个相似四边形的边长,量一量它们的内角,由一位同学把量得的结果写在黑板上,其他同学把量得的结果与同伴交流。 同学们会发现有什么关系呢?经过观察、计算得出这两个相似四边形的对应边会成比例,对应角会相等,再观察课本中两个相似的五边形,是否也具有一样的结果?反映它们的边之间、角之间的关系是什么关系? 同学用格点图画相似的两个三角形,也观察、度量,它们是否也具有这种关?对应边成比例,对应角相等。 由此可以得到两个相似多边形的特征: (由同学回答,教师板书)对应边成比例,对应角相等。 实际上这两
6、个特征,也是我们识别两个多边形是否相似的方法。即如果两个多边形的对应边都成比例,对应角都分别相等,那么这两个多边形相似。 识别两个多边形是否相似的标准有:(边数相同),对应边要(成比例),对应角要(都相等)。(填号内要求同学填) 想一想:(1)两个三角形一定是相似形吗?两个等腰三角形呢?两个等边三角形呢?两个等腰直角三角形呢? - (2)所有的菱形都相似吗?所有矩形呢?正方形呢? 例1:矩形ABCD与矩形ABCD中,AB1.5cm,BC4.5cm,AB0. 8cm,BC2.4cm,这两个矩形相似吗?为什么?例2:(课本第页例题) 三、练习 1课本第0页练习。2(补充):(1)矩形ABCD与矩形ABCD中,已知AB16cm,AD10cm,AD6cm,矩形AB CD的面积为57cm2,这两个矩形相似吗?为什么?3如图四边形ABCD与四边形ABCD是相似的,且CDBC,根据图中的条件,求出未知的边x,y及角a。四、小结 1两个多边形是否相似的两个标准是什么? 2相似多边形具有什么特征?五、作业 P ,。