收藏 分销(赏)

八年级数学下册 1.2 直角三角形教案2 (新版)北师大版-(新版)北师大版初中八年级下册数学教案.doc

上传人:s4****5z 文档编号:7629467 上传时间:2025-01-10 格式:DOC 页数:5 大小:175.50KB
下载 相关 举报
八年级数学下册 1.2 直角三角形教案2 (新版)北师大版-(新版)北师大版初中八年级下册数学教案.doc_第1页
第1页 / 共5页
八年级数学下册 1.2 直角三角形教案2 (新版)北师大版-(新版)北师大版初中八年级下册数学教案.doc_第2页
第2页 / 共5页
点击查看更多>>
资源描述
直角三角形 教学目 标 (一)知识与技能 1.知识目标: ①能够证明直角三角形全等的“HL”的判定定理,进一步理解证明的必要性 ②利用“HL’’定理解决实际问题 2.能力目标: ①进一步掌握推理证明的方法,发展演绎推理能力 3.情感、态度与价值感: (1)积极参与数学活动、对数学有好奇心和求知欲。 (2)形成实事求是的态度以及进行质疑和独立思考的习惯。 (二)过程与方法 (三)情感、态度与价值观 教学重点 直角三角形全等“HL”判定定理 教学难点 从图中找出隐含条件 教学程序 集体备课内容 个案补充 第一环节:导入新课 明确目标 1.判断两个三角形全等的方法有哪几种? 2.已知一条边和斜边,求作一个直角三角形。想一想,怎么画?同学们相互交流。 3、有两边及其中一边的对角对应相等的两个三角形全等吗?如果其中一个角是直角呢?请证明你的结论。 已知:在△ABC中, AB=AC. 求证:∠B=∠C. 证明:过A作AD⊥BC,垂足为C, ∴∠ADB=∠ADC=90° 又∵AB=AC,AD=AD, ∴△ABD≌△ACD. ∴∠B=∠C(全等三角形的对应角相等) 在实际的教学过程中,有学生对上述证明方法产生了质疑。质疑点在于“在证明△ABD≌△ACD时,用了“两边及其中一边的对角对相等的两个三角形全等”.而我们在前面学习全等的时候知道,两个三角形,如果有两边及其一边的对角相等,这两个三角形是不一定全等的.可以画图说明.(如图所示在ABD和△ABC中,AB=AB,∠B=∠B,AC=AD,但△ABD与△ABC不全等)” . 第二环节:预习反馈 点拨质疑 预习反馈 第三环节:分组合作 探究解疑 证明:“在两个直角三角形中,直角所对的边即斜边和一条直角边对应相等的两个直角三角形全等.”,从而引入新课。 (1).“HL”定理.由师生共析完成 已知:在Rt△ABC和Rt△A′B′C′中,∠C=∠C′=90°,AB=A′B′,BC=B′C′. 求证:Rt△ABC≌Rt△A′B′C′ 证明:在Rt△ABC中,AC=AB2一BC2(勾股定理). 又∵在Rt△ A' B' C'中,A' C' =A'C'=A'B'2一B'C'2 (勾股定理). AB=A'B',BC=B'C',AC=A'C'. ∴Rt△ABC≌Rt△A'B'C' (SSS). 定理 斜边和一条直角边对应相等的两个直角三角形全等. 这一定理可以简单地用“斜边、直角边”或“HL”表示. 问题 你能用三角尺平分一个已知角吗? 请同学们用手中的三角尺操作完成,并在小组内交流,用自己的语言清楚表达自己的想法. (设计做一做的目的为了让学生体会数学结论在实际中的应用,教学中就要求学生能用数学的语言清楚地表达自己的想法,并能按要求将推理证明过程写出来。) 议一议 如图,已知∠ACB=∠BDA=90°,要使△ACB≌BDA,还需要什么条件?把它们分别写出来. 这是一个开放性问题,答案不唯一,需要我们灵活地运用公理和已学过的定理,观察图形,积极思考,并在独立思考的基础上,通过同学之间的交流,获得各种不同的答案. 第四环节:展示分享、点评升华 例题学习 如图,在△ABC≌△A'B'C'中,CD,C'D'分别分别是高,并且AC=A'C',CD=C'D'.∠ACB=∠A'C'B'. 求证:△ABC≌△A'B'C'. 分析:要证△ABC≌△A'B'C',由已知中找到条件:一组边AC=A'C',一组角∠ACB=∠A'C'B'.如果寻求∠A=∠A',就可用ASA证明全等;也可以寻求么∠B=∠B',这样就有AAS;还可寻求BC=B'C',那么就可根据SAS.……注意到题目中,通有CD、C'D'是三角形的高,CD=C'D'.观察图形,这里有三对三角形应该是全等的,且题目中具备了HL定理的条件,可证的Rt△ADC≌Rt△A'D'C',因此证明∠A=∠A' 就可行. 证明:∵CD、C'D'分别是△ABC△A'B'C'的高(已知), ∴∠ADC=∠A'D'C'=90°. 在Rt△ADC和Rt△A'D'C'中, AC=A'C'(已知), CD=C'D' (已知), ∴Rt△ADC≌Rt△A'D'C' (HL). ∠A=∠A',(全等三角形的对应角相等). 在△ABC和△A'B'C'中, ∠A=∠A' (已证), AC=A'C' (已知), ∠ACB=∠A'C'B' (已知), ∴△ABC≌△A'B'C' (ASA). 第五环节:当堂检测 全面达标 1、判断下列命题的真假,并说明理由: (1)两个锐角对应相等的两个直角三角形全等; (2)斜边及一锐角对应相等的两个直角三角形全等; (3)两条直角边对应相等的两个直角三角形全等; (4)一条直角边和另一条直角边上的中线对应相等的两个直角三角形全等. 第六环节:课堂小结 本节课我们讨论了在一般三角形中两边及其一边对角对应相等的两个三角形不一定全等.而当一边的对角是直角时,这两个三角形是全等的,从而得出判定直角三角形全等的特殊方法——HL定理,并用此定理安排了一系列具体的、开放性的问题,不仅进一步掌握了推理证明的方法,而且发展了同学们演绎推理的能力.同学们这一节课的表现,很值得继续发扬广大. 第六环节:布置作业: A:2、3 B:1、2 C:任选 教学反思
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传
相似文档                                   自信AI助手自信AI助手

当前位置:首页 > 教育专区 > 初中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服