1、直角三角形教学目 标(一)知识与技能1知识目标:能够证明直角三角形全等的“HL”的判定定理,进一步理解证明的必要性利用“HL定理解决实际问题2能力目标:进一步掌握推理证明的方法,发展演绎推理能力3.情感、态度与价值感:(1)积极参与数学活动、对数学有好奇心和求知欲。(2)形成实事求是的态度以及进行质疑和独立思考的习惯。(二)过程与方法(三)情感、态度与价值观教学重点直角三角形全等“HL”判定定理教学难点从图中找出隐含条件教学程序集体备课内容个案补充第一环节:导入新课 明确目标1.判断两个三角形全等的方法有哪几种?2.已知一条边和斜边,求作一个直角三角形。想一想,怎么画?同学们相互交流。3、有两
2、边及其中一边的对角对应相等的两个三角形全等吗?如果其中一个角是直角呢?请证明你的结论。已知:在ABC中, AB=AC 求证:B=C证明:过A作ADBC,垂足为C,ADB=ADC=90又AB=AC,AD=AD,ABDACD B=C(全等三角形的对应角相等)在实际的教学过程中,有学生对上述证明方法产生了质疑。质疑点在于“在证明ABDACD时,用了“两边及其中一边的对角对相等的两个三角形全等”而我们在前面学习全等的时候知道,两个三角形,如果有两边及其一边的对角相等,这两个三角形是不一定全等的可以画图说明(如图所示在ABD和ABC中,AB=AB,B=B,AC=AD,但ABD与ABC不全等)” 第二环节
3、:预习反馈 点拨质疑预习反馈第三环节:分组合作 探究解疑证明:“在两个直角三角形中,直角所对的边即斜边和一条直角边对应相等的两个直角三角形全等”,从而引入新课。(1)“HL”定理由师生共析完成已知:在RtABC和RtABC中,C=C=90,AB=AB,BC=BC求证:RtABCRtABC证明:在RtABC中,AC=AB2一BC2(勾股定理)又在Rt A B C中,A C =AC=AB2一BC2 (勾股定理)AB=AB,BC=BC,AC=ACRtABCRtABC (SSS)定理 斜边和一条直角边对应相等的两个直角三角形全等 这一定理可以简单地用“斜边、直角边”或“HL”表示问题 你能用三角尺平分
4、一个已知角吗? 请同学们用手中的三角尺操作完成,并在小组内交流,用自己的语言清楚表达自己的想法(设计做一做的目的为了让学生体会数学结论在实际中的应用,教学中就要求学生能用数学的语言清楚地表达自己的想法,并能按要求将推理证明过程写出来。)议一议如图,已知ACB=BDA=90,要使ACBBDA,还需要什么条件?把它们分别写出来 这是一个开放性问题,答案不唯一,需要我们灵活地运用公理和已学过的定理,观察图形,积极思考,并在独立思考的基础上,通过同学之间的交流,获得各种不同的答案第四环节:展示分享、点评升华例题学习如图,在ABCABC中,CD,CD分别分别是高,并且ACAC,CD=CDACB=ACB求
5、证:ABCABC分析:要证ABCABC,由已知中找到条件:一组边AC=AC,一组角ACB=ACB如果寻求A=A,就可用ASA证明全等;也可以寻求么B=B,这样就有AAS;还可寻求BC=BC,那么就可根据SAS注意到题目中,通有CD、CD是三角形的高,CD=CD观察图形,这里有三对三角形应该是全等的,且题目中具备了HL定理的条件,可证的RtADCRtADC,因此证明A=A 就可行证明:CD、CD分别是ABCABC的高(已知),ADC=ADC=90在RtADC和RtADC中,AC=AC(已知),CD=CD (已知),RtADCRtADC (HL)A=A,(全等三角形的对应角相等)在ABC和ABC中
6、,A=A (已证),AC=AC (已知),ACB=ACB (已知),ABCABC (ASA)第五环节:当堂检测 全面达标1、判断下列命题的真假,并说明理由:(1)两个锐角对应相等的两个直角三角形全等; (2)斜边及一锐角对应相等的两个直角三角形全等; (3)两条直角边对应相等的两个直角三角形全等; (4)一条直角边和另一条直角边上的中线对应相等的两个直角三角形全等 第六环节:课堂小结本节课我们讨论了在一般三角形中两边及其一边对角对应相等的两个三角形不一定全等而当一边的对角是直角时,这两个三角形是全等的,从而得出判定直角三角形全等的特殊方法HL定理,并用此定理安排了一系列具体的、开放性的问题,不仅进一步掌握了推理证明的方法,而且发展了同学们演绎推理的能力同学们这一节课的表现,很值得继续发扬广大第六环节:布置作业:A:2、3 B:1、2 C:任选教学反思