1、18.4.2反比例函数的图像和性质知识技能目标1.理解反比例函数的图象是双曲线,利用描点法画出反比例函数的图象,说出它的性质; 2.利用反比例函数的图象解决有关问题过程性目标1.经历对反比例函数图象的观察、分析、讨论、概括过程,会说出它的性质; 2.探索反比例函数的图象的性质,体会用数形结合思想解数学问题教学过程一、创设情境上节的练习中,我们画出了问题1中函数的图象,发现它并不是直线那么它是怎么样的曲线呢?本节课,我们就来讨论一般的反比例函数(k是常数,k0)的图象,探究它有什么性质二、探究归纳1.画出函数的图象分析 画出函数图象一般分为列表、描点、连线三个步骤,在反比例函数中自变量x 0解
2、1列表:这个函数中自变量x的取值范围是不等于零的一切实数,列出x与y的对应值:2.描点:用表里各组对应值作为点的坐标,在直角坐标系中描出在京各点点(6,1)、(3,2)、(2,3)等3.连线:用平滑的曲线将第一象限各点依次连起来,得到图象的第一个分支;用平滑的曲线将第三象限各点依次连起来,得到图象的另一个分支这两个分支合起来,就是反比例函数的图象上述图象,通常称为双曲线(hyperbola)提问 这两条曲线会与x轴、y轴相交吗?为什么?学生试一试:画出反比例函数的图象(学生动手画反比函数图象,进一步掌握画函数图象的步骤)学生讨论、交流以下问题,并将讨论、交流的结果回答问题 1.这个函数的图象在
3、哪两个象限?和函数的图象有什么不同?2.反比例函数(k0)的图象在哪两个象限内?由什么确定?3.联系一次函数的性质,你能否总结出反比例函数中随着自变量x的增加,函数y将怎样变化?有什么规律?反比例函数有下列性质:(1)当k0时,函数的图象在第一、三象限,在每个象限内,曲线从左向右下降,也就是在每个象限内y随x的增加而减少;(2)当k0时,函数的图象在第二、四象限,在每个象限内,曲线从左向右上升,也就是在每个象限内y随x的增加而增加注 1双曲线的两个分支与x轴和y轴没有交点;2双曲线的两个分支关于原点成中心对称以上两点性质在上堂课的问题1和问题2中反映了怎样的实际意义?在问题1中反映了汽车比自行
4、车的速度快,小华乘汽车比骑自行车到镇上的时间少在问题2中反映了在面积一定的情况下,饲养场的一边越长,另一边越小三、实践应用例1 若反比例函数的图象在第二、四象限,求m的值分析 由反比例函数的定义可知: ,又由于图象在二、四象限,所以m10,由这两个条件可解出m的值解 由题意,得 解得例2 已知反比例函数(k0),当x0时,y随x的增大而增大,求一次函数ykxk的图象经过的象限分析 由于反比例函数(k0),当x0时,y随x的增大而增大,因此k0,而一次函数ykxk中,k0,可知,图象过二、四象限,又k0,所以直线与y轴的交点在x轴的上方解 因为反比例函数(k0),当x0时,y随x的增大而增大,所
5、以k0,所以一次函数ykxk的图象经过一、二、四象限例3 已知反比例函数的图象过点(1,2)(1)求这个函数的解析式,并画出图象;(2)若点A(5,m)在图象上,则点A关于两坐标轴和原点的对称点是否还在图象上?分析 (1) 反比例函数的图象过点(1,2),即当x1时,y2由待定系数法可求出反比例函数解析式;再根据解析式,通过列表、描点、连线可画出反比例函数的图象;(2)由点A在反比例函数的图象上,易求出m的值,再验证点A关于两坐标轴和原点的对称点是否在图象上解 (1)设:反比例函数的解析式为:(k0)而反比例函数的图象过点(1,2),即当x1时,y2 所以,k2即反比例函数的解析式为:(2)点
6、A(5,m)在反比例函数图象上,所以,点A的坐标为点A关于x轴的对称点不在这个图象上;点A关于y轴的对称点不在这个图象上;点A关于原点的对称点在这个图象上;例4 已知函数为反比例函数(1)求m的值;(2)它的图象在第几象限内?在各象限内,y随x的增大如何变化?(3)当3x时,求此函数的最大值和最小值解 (1)由反比例函数的定义可知: 解得,m2(2)因为20,所以反比例函数的图象在第二、四象限内,在各象限内,y随x的增大而增大(3)因为在第个象限内,y随x的增大而增大,所以当x时,y最大值;当x3时,y最小值所以当3x时,此函数的最大值为8,最小值为例5 一个长方体的体积是100立方厘米,它的
7、长是y厘米,宽是5厘米,高是x厘米(1)写出用高表示长的函数关系式;(2)写出自变量x的取值范围;(3)画出函数的图象解 (1)因为1005xy,所以 (2)x0(3)图象如下:说明 由于自变量x0,所以画出的反比例函数的图象只是位于第一象限内的一个分支四、交流反思本节课学习了画反比例函数的图象和探讨了反比例函数的性质1.反比例函数的图象是双曲线(hyperbola) 2.反比例函数有如下性质:(1)当k0时,函数的图象在第一、三象限,在每个象限内,曲线从左向右下降,也就是在每个象限内y随x的增加而减少;(2)当k0时,函数的图象在第二、四象限,在每个象限内,曲线从左向右上升,也就是在每个象限内y随x的增加而增加.