1、174 反比例函数174.1反比例函数教学目标 1经历从实际问题抽象出反比例函数的探索过程,发展学生的抽象思维能力。2理解反比例函数的概念,会列出实际问题的反比例函数关系式。教学过程一、复习 1什么是正比例函数? 2复习小学已学过的反比例关系,例如 (1)当路程s一定,时间t与速度v成反比例,即vt=s(s是常数) (2)当矩形面积一定时,长a和宽b成反比例,即abs(s是常数) 3创设问题情境 问题1:小华的爸爸早晨骑自行车带小华到15千米外的镇上去赶集,回来时让小华乘坐公共汽车,用的时间少了。假设自行车和汽车的速度在行驶过程中都不变,爸爸要小华找出从家里到镇上的时间和乘坐不同交通工具的速度
2、之间的关系。 分析:和其他实际问题一样,要探索两个变量之间的关系,应先选用适当的符 号表示变量,再根据题意列出相应的函数关系式。 设小华乘坐交通工具的速度是v千米时,从家里到镇上的时间是t小时,因为在匀速运动中,时间路程速度,所以t_(1) 问题2:学校课外生物小组的同学准备自己动手,用旧围栏建一个面积为24平方米的矩形饲养场。设它的一边长为x(米),求另一边的长y(米)与x的函数关系。 根据矩形面积可知xy24即y_(2) 提问: 1.以上(1)和(2)这两个函数有什么共同点? 让学生观察、分析后回答:这两个函数都具有y= (k是常数)的形式)。2.自变量的取值范围有什么限制?二、反比例函数
3、的意义 1.反比例函数定义:形如y(k是常数,k0)的函数叫做反比例函数。 说明:反比例函数与正比例函数定义相比较,本质上,正比例函数y=kx,即k,k是常数,且k0;反比例函数y,则xyk,k是常数,且k0。可利用定义判断两个量x和y满足哪一种比例关系,2,下列函数中,哪些是反比例函数(x为自变量)?说出反比例函数的比例系数:y xyx5y分析:函数y (k是常数,k0)叫做反比例函数。若一个函数可写成y (k是常数,k0)的形式,则它是反比例函数;若y与x成反比例,则y可以写成y(k0,k是常数),一个函数是否是反函数反比例函数,可以据此确定。三、课堂练习 1P50页练习1。 2补充:当m
4、为何值时,函数y是反比例函数,并求出其函数的解析式。四、小结:形如y(k是常数,k0)的函数叫做反比例函数。在实际问题中,要探求两个变量之间的关系,应先选用适当的符号表示变量,再根据题意列出相应的函数关系式对反比例函数概念的理解,可与正比例函数进行比较,从本质上加以区别。五、作业 P52页习题18、41六、教后记:174.2、反比例函数的图象和性质教学目标 1、使学生会画出反比例函数的图象。 2、经历对反比例函数图象的观察、分析、讨论、概括过程,会说出它的性质。教学过程一、复习1什么是反比例函数? 2反比例函数定义要注意什么?(1)常数k称为比例系数,k是非零常数;(2)自变量x次数是-1;x
5、与y之积为一非零常数;(3)不含其他项。二、提出问题,解决问题问题1:对于一次函数ykxb(b0),我们是如何研究的?问题2:对于反比例函数的研究,能否象一次函数那样进行研究呢?问题3:上节课我们已经学习了反比例函数的定义,接下去将要研究什么问题?问题4::对于般的反比例函数y= (k0,k是常数)的图象的研究,采取什么方法为好? 例:画出函数y=的图象。 分析:画出函数图象一般分为列表,描点、连线三个步骤,在反比例函数中自变量x0。解:1列表:这个函数中自变量x的取值范围是不等于零的一切实数,列出x与y的对应值; 2描点:用表里各组对应值作为点的坐标,在直角坐标系中描出各个点。3连线:用平滑
6、的曲线将第一象限各点依次连起来,得到图象的第一个分支;用平滑的曲线将第三象限各点依次连起来,得到图象的另一分支。这两个分支合起来,就是反比例函数的图象,如图所示。这种图象通常称为双曲线。 提问:这两条曲线会与x轴、y轴相交吗?为什么? 画出函数y的图象。 让学生动手画反比例的函数图象,进一步掌握画函数图象的步骤;教师注意指导画函数图象有困难的学生,并评析。 让学生讨论、交流以下问题; 1、这个函数的图象在哪两个象限?和函数y的图象有什么不同? 2、反比例函数y图象在哪两个象限?由什么确定? 3、联系一次函数的性质,你能否总结出反比例函数中,随着自变量x的增加,函数y将怎样变化?有什么规律? 在充分讨论、交流后达成共识: (1)当k0时,函数的图象在第一、三象限,在每个象限内,曲线从左向右下降,也就是在每个象跟内y随x的增加而减小; (2)当k0时,函数的图象在第二、四象限,在每个象限内,曲线向右上升,也就是在每个象限内y随x的增加而增大四、课堂练习 :P52页练习1、2五、小结:这节课,你学会了什么?六、作业 :P52页习题18、42、3七、教后记: