1、15.4.1提公因式法教学课题15.4.1提公因式法年级学科八年级(上)数学教学课时第1课时课型新授课主备教师使用教师教学目标 1使学生了解因式分解的概念,以及因式分解与整式乘法的关系 2了解提取公因式的方法 3会用提取公因式法分解因式 4. 在探索提公因式法分解因式的过程中学会逆向思维,渗透化归的思想方法教学重点与难点重点:会用提公因式法分解因式难点:如何确定公因式以及提出公因式后的另外一个因式教学准备及手段 多媒体教学 探究式教学教 学 过 程动态修改部分 提出问题,创设情境师请同学们完成下列计算,看谁算得又准又快(出示投影片)(1)20(-3)2+60(-3) (2)1012-992 (
2、3)572+25743+432 师在上述运算中,大家或将数字分解成两个数的乘积,或者逆用乘法公式使运算变得简单易行,类似地,在式的变形中,有时也需要将一个多项式写成几个整式的乘积形式,这就是我们从今天开始要探究的内容因式分解 导入新课 1分析讨论,探究新知 把下列多项式写成整式的乘积的形式 出示投影片(1)x2+x=_ (2)x2-1=_ (3)am+bm+cm=_ 生根据整式乘法和逆向思维原理,可以做如下计算:(1)x2+x=x(x+1) (2)x2-1=(x+1)(x-1) (3)am+bm+cm=m(a+b+c) 师像这种把一个多项式化成几个整式的积的形式的变形叫做把这个多项式因式分解,
3、也叫把这个多项式分解因式 可以看出因式分解是整式乘法的相反方向的变形,所以需要逆向思维 再观察上面的第(1)题和第(3)题,你能发现什么特点 生我发现(1)中各项都有一个公共的因式x,(2)中各项都有一个公共因式m,是不是可以叫这些公共因式为各自多项式的公因式呢? 师你分析得合情合理 因为ma+mb+mc=m(a+b+c) 于是就把ma+mb+mc分解成两个因式乘积的形式,其中一个因式是各项的公因式m,另一个因式a+b+c是ma+mb+mc除以m所得的商,像这种分解因式的方法叫做提公因式法 2例题教学,运用新知出示投影片:例1把8a3b2-12ab3c分解因式 例2把2a(b+c)-3(b+c
4、)分解因式例3把3x3-6xy+x分解因式 例4把-4a3+16a2-18a分解因式例5把6(x-2)+x(2-x)分解因式(让学生利用提公因式法的定义尝试独立完成,然后与同伴交流解题心得,教师深入到学生中去发现问题,并对有困难的学生进行适时的引导和启发,最后师生共同评析、总结) 例1分析:先找出8a3b2与12ab3c的公因式,再提出公因式我们看这两项的系数8与12,它们的最大公约数是4,两项的字母部分a3b2与ab3c都含有字母a和b其中a的最低次数是1,b的最低次数是2我们选定4ab2为要提出的公因式提出公因式4ab2后,另一个因式2a2+3bc就不再有公因式了 解:8a3b2+12ab
5、2c=4ab22a2+4ab23bc=4ab2(2a2+3bc)总结:提取公因式后,要满足另一个因式不再有公因式才行 例2分析:(b+c)是这两个式子的公因式,可以直接提出这就是说,公因式可以是单项式,也可以是多项式,是多项式时应整体考虑直接提出 解:2a(b+c)-3(b+c)=(b+c)(2a-3) 例3解:3x2-6xy+x=x3x-x6y+x1=x(3x-6y+1) 注意:如果单独成一项时,它在因式分解时不能漏掉 例4解:-4a3+16a2-18a=-(4a3-16a2+18a) =-2a(2a2-8a+9) 注意:如果多项式的第一项的系数是负的,一般要提出“”号,使括号内的第一项的系
6、数是正的在提出“”号时,多项式的各项都要变号可以用一句话概括:首项有负常提负 例5分析:先找6(x-2)与x(2-x)的公因式,再提取公因式因为2-x=-(x-2),所以x-2即公因式 解:6(x-2)+x(2-x)=6(x-2)-x(x-2) =(x-2)(6-x) 总结:有时多项式的各项从表面上看没有公因式,但将其中一些项变形后,但可以发现公因式,然后再提取公因式 随堂练习 1课本P168练习1、2 课时小结 作业 必做题: 作业本(2)15.4.1提公因式法 全品作业本15.4.1提公因式A、B 选做题: 全品作业本15.4.1提公因式C板书设计: 1541提公因式法因式分解的概念因式分解与整式乘法的关系提取公因式的方法 教后反思: