资源描述
27.3位似(1)
一、教材分析
本节课是义务教育课程标准实验教科书(人教版)《数学》九年级下册27.3.用坐标表示位似变换,本节课内容是在平面直角坐系下研究位似图形的点的坐标的变化特点及应用这个特点画图,是在平面直角坐标系下研究相似变换的基础,在学习本节课前学生已学习了在平面内画位似图形,在平面直角坐标系中画平移、轴对称和旋转(中心对称),由于一般的相似变换在平面直角坐标系下的描述比较复杂,所以只研究平面直角坐标系下的位似变换,而且是位似中心在原点的特殊情况,也是最简单的情况。在生活和生产中有时需要放大(或缩小)一个图形,利用位似(特别是利用平面直角坐系下的位似)可以很方便地将一个图形放大或缩小,学习本节知识有一定的实际意义。
二、学情分析
九年级学生已形成了一定的数学研究的思想方法,但学生分化严重,学习本节内容前,学生已经能够画某个图形关于某点的位似图形,大部分学生能够通过自主探究的形式完成本节的规律归纳,但在有限时间内让学生形成规律并运用规律,对大多数学生来说还存在一定的难度,所以在此采用教师画板演示,学生观察思考并大胆发表意见,师生共同归纳规律的方法,这样就把规律应用部分让学生充分展现。
三、教学目标
1.了解位似图形及其有关概念,了解位似与相似的联系和区别,掌握位似图形的性质.
2.掌握位似图形的画法,能够利用作位似图形的方法将一个图形放大或缩小.
四、教学重点难点
重点
位似图形的有关概念、性质与作图.
难点
利用位似将一个图形放大或缩小.
五、教学过程设计
一、创设情境
活动1 教师活动:提出问题:
生活中我们经常把自己好看的照片放大或缩小,由于没有改变图形的形状,我们得到的照片是真实的.
(教材P47页思考)观察图27.3-1图中有多边形相似吗?如果有,那么这种相似什么共同的特征?
图27.3-1
学生活动:学生通过观察了解到有一类相似图形,除具备相似的所有性质外,还有其特性,学生自己归纳出位似图形的概念:如果两个图形不仅是相似图形,而且是每组对应点连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形. 这个点叫做位似中心.这时的相似比又称为相似比.(位似中心可在形上、形外、形内.) 每对位似对应点与位似中心共线;不经过位似中心的对应线段平行.
二、利用位似,可以将一个图形放大或缩小
活动2
教师活动:提出问题:
(教材P47)把图1中的四边形ABCD缩小到原来的.
分析:把原图形缩小到原来的,也就是使新图形上各顶点到位似中心的距离与原图形各对应顶点到位似中心的距离之比为1∶2 .
作法一:(1)在四边形ABCD外任取一点O;
(2)过点O分别作射线OA,OB,OC,OD;
(3)分别在射线OA,OB,OC,OD上取点A′、B′、C′、D′,
使得;
(4)顺次连接A′B′、B′C′、C′D′、D′A′,得到所要画的四边形A′B′C′D′,如图2.
问:此题目还可以如何画出图形?
作法二:(1)在四边形ABCD外任取一点O;
(2)过点O分别作射线OA, OB, OC,OD;
(3)分别在射线OA, OB, OC, OD的反向延长线上取点A′、B′、C′、D′,使得;
(4)顺次连接A′B′、B′C′、C′D′、D′A′,得到所要画的四边形A′B′C′D′,如图3.
作法三:(1)在四边形ABCD内任取一点O;
(2)过点O分别作射线OA,OB,OC,OD;
(3)分别在射线OA,OB,OC,OD上取点A′、B′、C′、D′,
使得;
(4)顺次连接A′B′、B′C′、C′D′、D′A′,得到所要画的四边形A′B′C′D′,如图4.
(当点O在四边形ABCD的一条边上或在四边形ABCD的一个顶点上时,作法略——可以让学生自己完成)
三、课堂练习
活动3 教材P48页.1、2
四、课堂小结:
谈谈你这节课学习的收获.
六、练习及检测题
教材P48页.1、2。
七、作业设计
A组:51页:1.2.题
B组:2.3.4题。
展开阅读全文