1、133等腰三角形133.1等腰三角形第1课时等腰三角形的性质和应用1理解并掌握等腰三角形的性质2运用等腰三角形的性质进行证明和计算3观察等腰三角形的对称性、发展形象思维重点等腰三角形的性质及应用难点等腰三角形的性质的证明一、情境导入【活动1】教师预先做出各种几何图形,包括圆、长方形、正方形、等腰梯形、一般三角形、等腰三角形、等边三角形等让同学们抢答哪些是轴对称图形,提问什么是轴对称图形,什么样的三角形才是轴对称图形引入今天所要讲的课题等腰三角形我们知道,有两条边相等的三角形是等腰三角形,下面我们利用轴对称的知识来研究等腰三角形二、探究新知如图,把一张长方形的纸按图中虚线对折,并剪去阴影部分,再
2、把它展开,得到的ABC有什么特点?学生活动:学生动手操作,从剪出的图形观察ABC的特点,可以发现ABAC.教师活动:让学生回顾等腰三角形的概念:有两边相等的三角形叫做等腰三角形,相等的两边叫做腰,另一边叫做底边,两腰的夹角叫做顶角,腰和底边的夹角叫做底角如下图在ABC中,若ABAC,则ABC是等腰三角形,AB,AC是腰,BC是底边,A是顶角,B和C是底角【活动2】把活动1中剪出的ABC沿折痕AD对折,找出其中重合的线段,填入下表:重合的线段重合的角从上表中你能发现等腰三角形具有什么性质吗?学生活动:学生经过观察,独立完成上表,然后小组讨论交流,从表中总结等腰三角形的性质教师活动:引导学生归纳性
3、质1等腰三角形的两个底角相等(简写成“等边对等角”);性质2等腰三角形顶角平分线、底边上的中线、底边上的高相互重合(简写成“三线合一”) 【活动3】你能用所学知识验证上述性质吗?如图,在ABC中,ABAC.求证:BC.学生活动:学生在独立思考的基础上进行讨论,寻找解决问题的办法,若证BC,根据全等三角形的知识可以知道,只需要证明这两个角所在的三角形全等即可于是可以作辅助线构造两个三角形,作BC边上的中线AD,证明ABD和ACD全等即可,根据条件利用“边边边”可以证明教师活动:让学生充分讨论,根据所学的数学知识利用逻辑推理的方式进行证明,证明过程中注意学生表述的准确性和严谨性证明:作BC边上的中
4、线AD,如图在ABD和ACD中,所以ABDACD(SSS),所以BC.这样,就证明了性质1.类比性质1的证明你能证明性质2吗?由ABDACD,还可得出BADCAD,ADBADC90.从而ADBC,这也就证明了等腰ABC底边上的中线平分顶角A并垂直于底边BC.添加辅助线的方法多样,让学生再去讨论、交流,即用类似的方法可以证明性质2.三、应用提高例1如图,在ABC中,ABAC,点D在AC上,且BDBCAD,求ABC各角的度数学生活动:小组合作,分组讨论、交流教师活动:引导学生分析图形中关于角的数量关系(三角形的内角、外角,等腰三角形的底角)发现:(1)ABCACBCDBAABD;(2)AABD;(
5、3)A2C180.若设Ax,则有x4x180,得到x36,进一步得到两个底角的度数四、小结与作业请同学们回顾本节课所学的内容,有哪些收获?师生活动:学生思考后,用自己的语言归纳,教师适时点评,并关注以下几个问题:小结:(1)等边对等角;(2)等腰三角形的三线合一;(3)等腰三角形常用辅助线作法(作底边上的高、作底边上的中线、作顶角的平分线)作业:教材习题13.3第1,3,7题本节课重点要让学生通过动手翻折等腰三角形纸片得出等腰三角形“两个底角相等”、“三线合一”的性质设计理念是让学生通过感官认识、折纸、猜想、验证等腰三角形的性质,然后运用全等三角形的知识加以论证,使学生思维由形象直观过渡到抽象的逻辑演绎,层层展开,步步深入,从而实现教学目的