1、认识不等式教学目标:1. 认识不等式,能正确理解不等式的概念,弄清不等式的实质;2. 通过对具体问题的分析会列出简单的不等式,用不等式表示简单的数字语言;3. 理解不等式的解的概念,会寻找不等式的解.重点:了解不等式的构成,知道什么师不等式。难点:用不等式表示数量关系。教学过程:一. 研究问题:世纪公园的票价是:每人5元,一次购票满30张可少收1元.某班有27名少先队员去世公园进行活动.当领队王小华准备好了零钱到售票处买了27张票时,爱动脑的李敏同纪学喊住了王小华,提议买30张票.但有的同学不明白.明明只有27个人,买30张票,岂不浪费吗?那么,究竟李敏的提议对不对呢?是不是真的浪费呢二. 新
2、课探究:分析上面的问题设有x人要进世纪公园,若x30,应该如何买票? 若x30, 则又该如何买票呢?结论:至少要有多少人进公园时,买30张票才合算?概括:1、不等式的定义:表示不等关系的式子,叫做不等式.不等式用符号,. 2、不等式的解:能使不等式成立的未知数的值,叫做不等式的解. 3、不等式的分类: 恒不等式:-71+4,a+2a+1. 条件不等式:x+36,a+23,y-3-5.三、基础训练。 例1、用不等式表示: a是正数; b不是负数; c是非负数; x 的平方是非负数; x的一半小于-1; y与4的和不小于. 注:不等式表示代数式之间的不相等关系,与方程表示相等关系相对应; 研究不等
3、关系列不等式的重点是抓关键词,弄清不等关系。 例2、用不等式表示: a与1的和是正数; x的2倍与y的3倍的差是非负数; x的2倍与1的和大于1;a的一半与4的差的绝对值不小于a. 例3、当x=2时,不等式x-12成立吗?当x=3呢?当x=4呢? 注:检验字母的值能否使不等式成立,只要代入不等式的左右两边,如果符合不等号所表示的关系,就成立,否则就不成立。 代入法是检验不等式的解的重要方法。学生练习:课本P42练习1、2、3。四、能力拓展 学校组织学生观看电影,某电影院票价每张12元,50人以上(含50人)的团体票可享受8折优惠,现有45名学生一起到电影院看电影,为享受8折优惠,必须按50人购
4、团体票。请问他们购买团体票是否比不打折而按45人购票便宜;若学生到该电影院人数不足50人,应至少有多少人买团体票比不打折而按实际人数购票便宜。解:按实际45人购票需付钱_元,如果按50人购买团体票则需付钱5012元,所以购买团体票便宜。设有x人到电影院观看电影,当x_时,按实际人数买票_张,需付款_元,而按团体票购票需付款_元,如果买团体票合算,那么应有不等式_, 由得,当x=45时,上式成立,让我们再取一些数据试一试,将结果填入下表:x12x比较480与12x的大小4812x成立吗?30404142由上表可见,至少要_人时进电影院,购团体票才合算。五、小结 不等式的定义,不等式的解。 对实际问题中探索得到的不等式的解,不仅要满足数学式子,而且要注意实际意义.六、作业:P42:习题1、2、3.