1、正多边形与圆 了解正多边形和圆的有关概念;理解并掌握正多边形半径和边长、边心距、中心角之间的关系,会应用多边形和圆的有关知识画多边形 复习正多边形概念,让学生尽可能讲出生活中盼多边形为引题引入正多边形和圆这一节间的内容 1重点:讲清正多边形和圆中心正多边形半径、中心角、弦心距、边长之间的关系 2难点与关键:通过例题使学生理解四者:正多边形半径、中心角、弦心距、边长之间的关系 一、复习引入 请同学们口答下面两个问题 1什么叫正多边形? 2从你身边举出两三个正多边形的实例,正多边形具有轴对称、中心对称吗?其对称轴有几条,对称中心是哪一点? 点评:1各边相等,各角也相等的多边形是正多边形 2实例略正
2、多边形是轴对称图形,对称轴有无数多条;正多边形是中心对称图形,其对称中心是正多边对应顶点的连线交点 二、探索新知如果我们以正多边形对应顶点的交点作为圆心,过点到顶点的连线为半径,能够作一个圆,很明显,这个正多边形的各个顶点都在这个圆上,如图,正六边形ABCDEF,连结0D、CF交于一点,以O为圆心,OA为半径作圆,那么肯定B、C、D、E、F都在这个圆上 因此,正多边形和圆的关系十分密切,只要把一个圆分成相等的一些弧,就可以作出这个圆的内接正多边形,这个圆就是这个正多边形的外接圆 我们以圆内接正六边形为例证明(略) 为了今后学习和应用的方便,我们把一个正多边形的外接圆的圆心叫做这个多边形的中心
3、外接圆的半径叫做正多边形的半径 正多边形每一边所对的圆心角叫做正多边形的中心角 中心到正多边形的一边的距离叫做正多边形的边心距 例1已知正六边形ABC DEF,如图所示,其外接圆的半径是n,求正六边形的周长和面积 分析:要求正六边形的周长,只要求AB的长,已知条件是外接圆半径,因此自然而然,边长应与半径挂上钩,很自然应连接OA,过O点作OMAB垂于M,在RtAOM中便可求得AM,又应用垂径定理可求得 AB的长正六边形的面积是由六块正三角形面积组成的 例2利用你手中的工具画一个边长为3cm的正五边形 分析:要画正五边形,首先要画一个圆,然后对圆五等分,因此,应该先求边长为3的正五边形的半径三、巩
4、固练习教材P115 练习l、2、3,Pll6 探究题、练习四、应用拓展 例3在直径为AB的半圆内,划出一块三角形区域,如图所示,使三角形的一边为 AB,顶点C在半圆圆周上,其它两边分别为6和8,现要建造一个内接于ABC的矩形水池DEFN,其中D、E在AB上,如图的设计方案是使AC8,BC6 (1)求ABC的边AB上的高(2)设当z取何值时,水池DEFN的面积最大? (3)实际施工时,发现在AB上距B点185的 M处有一棵大树,问:这棵大树是否位于最大矩形水池的边上?如果在,为了保护大树,请设计出另外的方案,使内接于满足条件的三角形中欲建的最大矩形水池能避开大树 分析:要求矩形的面积最大,先要列出面积表达式,再考虑最值的求法,初中阶段,尤其现学的知识,应用配方法求最值,(3)的设计要有新意,应用圆的对称性就能圆满解决此题五、归纳小结(学生小结,点评) 本节课应掌握: 1正多边和圆的有关概念:正多边形的中心,正多边形的半径,正多边形的中心角,正多边的边心距 2正多边形的半径、正多边形的中心角、边长、正多边的边心距之间的等量关系 3画正多边形的方法 4运用以上的知识解决实际问题六、布置作业教材P117 复习巩固1 综合运用5、7 P118的8