1、第十四章 整式的乘法与因式分解14.2乘法公式14.2.2 完全平方公式 【知识与技能】(1)完全平方公式的推导及应用.(2)完全平方公式的几何解释.【过程与方法】通过对完全平方公式的探索、验证、应用解决问题,体会转化思想、数形结合思想等.【情感态度与价值观】培养学生观察、类比、发现的能力,体验数学活动充满探索性和创造性. 完全平方公式的推导过程、结构特点、几何解释、灵活运用. 理解完全平方公式的结构特征,并能灵活运用公式进行计算. 多媒体课件. 教师出示习题:1.填空:两个数的和与这两个数的差的积,等于这两个数的平方差,即(a+b)(a-b)=a2-b2,这个公式叫作平方差公式.学生抢答.2
2、.用平方差公式计算:(1)(-m+5n)(-m-5n);(2)(3x-1)(3x+1).让两名学生代表上台板演.通过复习对比旧知识,引出新课3.a2+b2与(a+b)2;a2-b2与(a-b)2有什么区别?教师引导学生比较a2+b2与(a+b)2;a2-b2与(a-b)2的区别和联系.教师:怎样计算两个数的和的平方或差的平方呢?本节课我们就来解决这个问题.(教师板书课题) 探究1:完全平方公式教师引入:我们前面学习了乘方和多项式与多项式相乘的法则,能不能将(a+b)2转化为我们学过的知识去解决呢?教师出示习题:让学生独立做题,然后引导学生发现(1)结果中的2p=2p1,(1)与(2)比较,结果
3、中只有一次项的符号不同.让学生观察式子的结构特点,并用语言叙述出来:等号左边是两个相同二项式相乘,即一个二项式的平方两个数的和(或差)的平方.等号右边是一个二次三项式,其中两项是等号左边的二项式两项的平方的和,第三项是等号左边的两项之积的2倍.(首平方加尾平方,乘积二倍在中央)师生共同总结:两个数的和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍.教师引入:其实我们还可以从几何角度去解释完全平方公式.你们能根据图14-2.2-1(1)(2)中的面积说明完全平方公式吗?师生共同分析:观察图14-2.2-1(1),可以看出大正方形的边长是(a+b),得出大正方形的面积为(a+b)2
4、=a2+2ab+b2.这正好符合完全平方公式.观察图14-2.2-1(2),可以看出大正方形的边长是a,较小的正方形的边长是(a-b),得出较小的正方形的面积为这正好符合完全平方公式.教师进行归纳总结:(1)运用完全平方公式的关键在于明确公式的特征:公式的左边是两数和(或差)的平方,公式的右边是一个二次三项式,是左边两数的平方和加上(或减去)左边两数积的2倍.(2)公式中字母的含义:公式中字母a和b可以是具体的数,也可以是整式(单项式或多项式).利用完全平方公式计算多项式的乘法,最容易漏写2ab项,实际运算中要特别注意.完全平方公式与平方差公式联合使用时,要严格分清公式各自的特点,以防混淆.(
5、3)逆用完全平方公式:,把三项式写成了积的形式,这是后面要学习的因式分解.教师出示教材P110例3:运用完全平方公式计算:可由学生口答完成,教师用多媒体展示结果,提高课堂效率.教师出示教材P110例4:运用完全平方公式计算:(1)1022;(2)992.可先让学生独立思考,然后自主发言,口述解题思路.教师可先不给出题目中“运用完全平方公式计算”的要求,允许他们用多种算法求解,但要求学生明白每种算法的局限性和优越性.让学生完成教材P110练习第1,2题,完成后同桌之间互相检查.探究2:添括号法则教师引导学生完成以下活动:活动1:问题导入现有如图14-2.2-2的三种规格的卡片各若干张,请你根据二
6、次三项式,选取相应种类和数量的卡片,尝试拼成一个正方形,并讨论该正方形的代数意义.由小组合作共同完成拼图游戏,比一比哪个小组快.活动2:思考讨论相等吗?相等吗?相等吗?为什么?组织学生进行讨论,通过自主推导,互相合作、交流,共同解决难题.活动3:教师说明运用乘法公式计算,有时要在式子中添括号.我们学过去括号法则,即a+(b+c)=a+b+c;a-(b+c)=a-b-c.反过来,就得到添括号法则:a+b+c=a+(b+c);a-b-c=a-(b+c).也就是说,添括号时,如果括号前面是正号,括到括号里的各项都不变符号;如果括号前面是负号,括到括号里的各项都改变符号.教师强调:(1)添括号法则与去
7、括号法则是一致的,添括号正确与否,可利用去括号进行检验.(2)添括号时,如果前面是负号,那么括到括号里的各项都改变符号,不能只改变部分项的符号.教师出示教材P111例5:运用乘法公式计算:(1)(x+2y-3)(x-2y+3);(2)(a+b+c)2.师生共同分析,教师板书(1),学生独立完成(2).教师总结:一些不是二项式的式子的平方也可以利用完全平方公式来计算,解题的关键是使其转化为二项式的平方,如计算,可以把这个代数式转化为,把(b+c)或(a+b)看成一个整体(一个字母),也可以把这个式子转化为(a+c)+b2.实际操作时要看怎样做最简便.教师让学生完成教材P111练习第1,2题,完成后同桌之间互相检查.1.完全平方公式:2.添括号法则:添括号时,如果括号前面是正号,括到括号里的各项都不变符号;如果括号前面是负号,括到括号里的各项都改变符号