收藏 分销(赏)

七年级数学上册 5.1一元一次方程(1)教案 北师大版.doc

上传人:s4****5z 文档编号:7619789 上传时间:2025-01-10 格式:DOC 页数:37 大小:127KB
下载 相关 举报
七年级数学上册 5.1一元一次方程(1)教案 北师大版.doc_第1页
第1页 / 共37页
七年级数学上册 5.1一元一次方程(1)教案 北师大版.doc_第2页
第2页 / 共37页
七年级数学上册 5.1一元一次方程(1)教案 北师大版.doc_第3页
第3页 / 共37页
七年级数学上册 5.1一元一次方程(1)教案 北师大版.doc_第4页
第4页 / 共37页
七年级数学上册 5.1一元一次方程(1)教案 北师大版.doc_第5页
第5页 / 共37页
点击查看更多>>
资源描述

1、审阅人:一、课题 5.1一元一次方程(1)二、教学目标1使学生了解一元一次方程的概念,并牢固地掌握最简单一元一次方程的解法;2培养学生观察、分析、概括的能力以及准确而迅速的运算能力三、教学重点和难点重点:一元一次方程的概念和方程ax=b(a0)的解法难点:正确地解方程ax=b(a0)四、教学手段引导活动讨论五、教学方法启发式教学六、教学过程(一)、从学生原有的认知结构提出问题1针对前二节所学内容,请学生回答下列问题(1)什么叫等式?等式应具备什么性质?(2)什么叫方程?方程的解?解方程?(3)(投影)某数的4倍减去9等于3,列出方程,并检验x=2,x=3是不是该方程的解(让一名学生在黑板上板演

2、本题,其余学生在练习本上完成,教师巡视,发现问题,及时纠正)请找出它们具有的特点?(只含有一个未知数;未知数的次数都是一次)2在学生回答完上述问题的基础上,引出课题我们将具备上述特点的方程叫做一元一次方程请学生回答:什么叫一元一次方程?根据学生的回答,教师板书一元一次方程的概念这时,教师还需指出:“元”是指未知数的个数,“次”是指方程中含有未知数项的最高次数本节课我们来学习最简单的一元一次方程的解法(板书课题)(二)、师生共同讨论得出最简一元一次方程的解法例 解下列方程:分析:利用等式性质2,在方程的两边都除以未知数x的系数,将其系数化1,即可得到原方程的解最后还需检验所得的数是否为原方程的解

3、(2)(3)(4)略(让学生先回答本题,教师追问根据,然后,老师根据学生的回答将方程(1)的解答过程板书方程(2)(3)(4)的解答过程请三名学生板演,师生共同讲评)最后,教师可追问学生,方程ax=b(a0)的解是什么?根据是什么?(三)、课堂练习解下列方程:(投影)(本题的作用是进一步巩固学生对最简一元一次方程的解法的掌握,使之运用得灵活、自如这样做也为后继课的学习做好铺垫)(四)、师生共同小结采用师生一问一答的方式,小结本节课所学的内容最后教师指出:据是等式性质22不要把两个方程用等号连接起来如-x=1=x=13问题:若a=0,则方程ax=b的解又是什么呢?(思考)七、练习设计解下列方程,

4、并检验:思考题解关于x的方程:(关于x的方程,就是把方程中除x以外的字母看成已知数,解此类问题要注意已知数a,b的取值范围)八、板书设计 5.1一元一次方程(1)(一)知识回顾 (三)例题解析 (五)课堂小结 例1、例2(二)观察发现 (四)课堂练习 练习设计九、教学后记一、课题 5.1一元一次方程(2)二、教学目标1使学生掌握移项的概念,并能利用移项解简单的一元一次方程;2培养学生观察、分析、概括和转化的能力,提高他们的运算能力三、教学重点和难点重点:移项解一元一次方程难点:移项的概念四、教学手段引导活动讨论五、教学方法启发式教学六、教学过程(一)、从学生原有的认知结构提出问题1等式的性质是

5、什么?2什么叫一元一次方程?方程ax=b(a0)的解是什么?3(投影)解方程:(让学生口答本题,发动其余学生及时纠正出现的错误,做到一题多用)我们已经学习了解最简单的一元一次方程ax=b(a0),今天学习把某些简单的一元一次方程化为最简的一元一次方程,从而求得其解(教师板书课题:一元一次方程的解法(二)(二)、师生共同研究解简单的一元一次方程的方法例1 解方程3x-5=4在分析本题时,教师应向学生提出如下问题:1怎样才能将此方程化为ax=b的形式?2上述变形的根据是什么?(以上过程,如学生回答有困难,教师应作适当引导)解:3x-5=4,方程两边都加上5,得3x-5+54+5,即3x=4+5,3

6、x=9,x=3(本题的解答过程应找多名学生分别口述,教师严格、规范板书,并请学生口算检验)例2 解方程7x=5x-4(此题的分析与解答过程的教学设计可仿照例1重复进行)针对例1,例2的分析与解答,教师可提出以下几个问题:3将方程3x-5=4,变形为3x=4+5这一过程中,什么变化了?怎样变化的?4将方程7x=5x-4,变形为7x-5x=-4这一过程中,什么变化了?怎样变化的?(-5变为+5,并由方程的左边移到方程的右边;5x变为-5x,并由方程的右边移到方程的左边)我们将方程中某一项改变符号后,从方程的一边移到另一边,这种变形叫做移项利用移项,我们可以将例2按以下步骤来书写解:7x=5x-4,

7、移项,得7x-5x=-4,合并同类项,得2x=-4,未知数x的系数化1,得x=-2至此,应让学生总结出解诸如例1、例2这样的一元一次方程的步骤,并强调移项要变号(三)、课堂练习(用投影给出)解方程:(这个练习,应找部分学生板演,其余学生在下面自行完成,其间,教师要巡视,发现问题及时纠正,并鼓励同学间互相讲评,同时,教师还应要求学生严格参照例2的解题格式完成这个练习,并要求口算检根)(四)、师生共同小结首先,采取师生一问一答的形式回顾本节课学习了哪些内容?采用了什么样的思维方法?在解题时需要注意什么?然后,教师需指出,采用了将“未知”转化为“已知”的思维方法,这是一种非常重要的思维方法,它在后继

8、课的学习起着非常重要的作用同时再次强调移项要变号最后,教师可引申,若所给方程中的某一项或某几项有括号,我们应如何求出方程的解?(为下节课埋下伏笔,引出悬念,从而激发学生的学习兴趣)七、练习设计解下列方程:思考题解关于x的方程:(1)ax=bx; (2)(a2+1)x=(a2-1)x八、板书设计 5.1一元一次方程(2)(一)知识回顾 (三)例题解析 (五)课堂小结 例1、例2(二)观察发现 (四)课堂练习 练习设计九、教学后记一、课题 5.1一元一次方程(3)二、教学目标1使学生掌握解一元一次方程的移项规律,并且掌握带有括号的一元一次方程的解法;2培养学生观察、分析、转化的能力,同时提高他们的

9、运算能力三、教学重点和难点重点:带有括号的一元一次方程的解法难点:解一元一次方程的移项规律四、教学手段引导活动讨论五、教学方法启发式教学六、教学过程(一)、从学生原有的认知结构提出问题1解方程ax=b(a0),并指出解法根据2什么叫做移项?移项的根据是什么?移项时应当注意什么?3(投影)解下列方程:本节课我们继续学习移项应注意的问题和含有括号的一元一次方程的解法(二)、师生共同研究讨论解一元一次方程的移项规律例1 解方程5x+2=7x-8在分析本题时,教师向学生提出如下问题:1利用什么方法可将所给方程化为ax=b的形式?2怎样移项呢?根据学生回答的情况,得到的下面两种解法解法1 5x+2=7x

10、-8,移项,得5x-7x=-8-2,合并同类项,得-2x=-10系数化1,得x=5解法2 移项,得2+8=7x-5x,合并同类项,得10=2x,系数化1,得x=5最后,请学生口算验根结合本例题的解法1和解法2,启发学生总结出求解像上述例题这样的一元一次方程时,它的移项规律是什么(一般地,把含有未知数的项移到一边,不含未知数的项移到另一边)(若学生回答有困难,教师应做适当引导)然后,教师应指出,习惯上多把含有未知数的项移到左边,有时为了简单也可以移到左边(三)、师生共同探讨得出带有括号的一元一次方程的解法例2 解方程2(x-2)-3(4x-1)=9(1-x)解:(怎样才能将所给方程转化为例1所示

11、方程的形式呢?请学生回答)去括号,得2x-4-12x+3=9-9x,移项,得2x-12x+9x=9+4-3,合并同类项,得-x=10,系数化1,得x=-10(本题解答过程应首先由学生口述,教师板书,然后,请学生检验-10是否为原方程的根)此时,启发学生总结遇有带括号的一元一次方程的解法(方程里含有括号时,移项前,要先去括号)(四)、课堂练习(投影)1下列方程的解法对不对?若不对怎样改正?解方程2(x+3)-5(1-x)=3(x-1)解:2x+3-5-5x=3x-1,2x-5x-3x3+5-3,-6x=-1,2解方程:(1)2x+5=25-8x; (2)8x-2=7x-2; (3)2x+3=11

12、-6x;(4)3x-4+2x=4x-3; (5)10y+7=12-5-3y; (6)2.4x-9.8=1.4x-93解方程:(1)3(y+4)12; (2)2-(1-z)=-2;(3)2(3y-4)+7(4-y)=4y; (4)4x-3(20-x)=6x-7(9-x);(5)3(2y+1)=2(1+y)+3(y+3)(五)、师生共同小结师生采用一问一答的形式,一起总结本节课都学习哪些内容?哪些思想方法?应注意什么?在此基础上,教师应着重指出在运用移项规律解题时,一般情况下,应把含有未知数的项移到等号的左边,但有时依具体情况,也可灵活处理;将“复杂”问题转化为“简单”问题,将“未知”问题转化为“

13、已知”问题,将“陌生”问题转化为“熟悉”问题,这种思考问题的方法是一种非常重要的数学思考方法本节课的例题、练习题的解答就充分地体现这一点七、练习设计解下列方程:18x-4=6x-20x-6+3; 23x-26+6x-9=12x+50-7x-5;34(2y+3)=8(1-y)-5(y-2); 415-(7-5x)=2x+(5-3x);512-3(9-y)5(y-4)-7(7-y); 616(1-2x)-4(11-2x)=7(2-6x);73x-4(2x+5)=7(x-5)+4(2x+1); 82(7y-2)+10y=5(4y+3)+3y思考题解下列方程:12|x|-1=3-|x|;22|x+1|

14、=|x+1|八、板书设计 5.1一元一次方程(3)(一)知识回顾 (三)例题解析 (五)课堂小结 例1、例2(二)观察发现 (四)课堂练习 练习设计九、教学后记一、课题 5.1一元一次方程(4)二、教学目标1使学生掌握含有以常数为分母的一元一次方程的解法;2培养学生观察、分析、归纳及概括的能力,加强他们的运算能力三、教学重点和难点重点:含有以常数为分母的一元一次方程的解法难点:正确地去分母四、教学手段引导活动讨论五、教学方法启发式教学六、教学过程(一)、从学生原有的认知结构提出问题1什么叫移项?解一元一次方程的移项规律是什么?2(投影)解下列方程:(请学生口答)3求几个数的最小公倍数的方法是什

15、么?本节课,我们继续来学习含有以常数为分母的比较复杂的一元一次方程的解法(二)、师生共同研究解含有以常数为分母的比较复杂的一元一次方程的方法在分析本题的解法时,向学生提出如下问题:(1)怎样才能将它化成上节课中所学的方程的类型?(去分母)(2)如何去分母?(方程的每一项都乘以分母的最小公倍数)去分母,得 5y-1=14,移项,得5y=15,系数化1,得y=3解:(本题应如何去分母?学生答)去分母,得4(2x-1)-(10x+1)=3(2x+1)-12,去括号,得8x-4-10x-16x+3-12,移项,得8x-10x-6x3-12+4+1,合并同类项,得-8x=-4,系数化1,得针对本题的解答

16、过程,应向学生提出如下问题:(3)为了去分母,方程两边应乘以什么数?(4)去分母应注意什么?(以上问题,若学生回答有困难,或不完整,教师应做适当的引导,补充)(本题的解答过程,应由学生口述,教师板书来完成)教师启发学生总结解含有以常数为分母的一元一次方程的思路是什么(利用去分母的方法,将它转化为上一节所学的方程的形式)(三)、课堂练习解下列方程:(四)、师生共同小结首先,应让学生回答下列问题:1本节课学习了什么内容?2用什么样的方法将本节所学的新的类型方程转化为上节课我们熟悉类型的方程?3为了去分母,方程两边应乘以什么数?这个数是如何选取的?4去分母时应注意什么?结合学生的回答,教师作补充去分

17、母时需注意:所选的乘数是所有的分母的最小公倍数;用这个最小公倍数去乘方程两边时,不要漏掉等号两边不含字母的“项”;去掉分母时,分数线也同时去掉,分子上的多项式要用括号括起来七、练习设计解下列方程:思考题解关于x的方程:(1)ax=bx; (2)(a2+1)x=(a2-1)x八、板书设计 5.1一元一次方程(4)(一)知识回顾 (三)例题解析 (五)课堂小结 例1、例2(二)观察发现 (四)课堂练习 练习设计九、教学后记一、课题 5.1一元一次方程(5)二、教学目标1加深学生对一元一次方程概念的理解,并总结出解一元一次方程的步骤;2培养学生观察、分析、归纳的能力,并提高他们的运算能力三、教学重点

18、和难点解一元一次方程的步骤四、教学手段引导活动讨论五、教学方法启发式教学六、教学过程(一)、从学生原有的认知结构提出问题1什么叫一元一次方程?其最简形式是什么?2什么叫移项?移项时需注意什么?3(投影)下列方程的解法对不对?若不对,错在哪里?怎样改正?(1)解方程2x+1=4x+1解:2x+4x=0,6x=0,所以 x=0解:x+1=3x-1-1,2x=3,解:4x+2-x+1=123x=9,所以 x=3(分别让三名学生分别解答本题,其他学生评判,并补充,以求得正确地解答)然后,教师应指出:一元一次方程的解法基本学习完了,现在对任何形式的一元一次方程都会解了解一元一次方程的指导思想就是把原方程

19、化为ax=b(a0)的形式为了更迅速地解一元一次方程,下面我们一起来总结一下解一元一次方程的一般步骤(二)、师生共同讨论,归纳出解一元一次方程的一般步骤(学生口述,教师板书)解:去分母,得6(x+3)22.5x-10(x-7),去括号,得6x+18=22.5x-10x+70,移项,得6x-22.5x+10x70-18,合并同类项,得-6.5x52,系数化1,得x=-8结合上面学生解答的例题,教师应首先让几名学生总结解一元一次方程的步骤;然后教师指出总结的不足之处,并结合投影,给以正确的叙述(三)、课堂练习解下列方程:(这组练习题的作用在于巩固并加深学生对一元一次方程解法步骤的理解及运用教学时,

20、可选好、中、差的学生分别在黑板上板演,发动学生改错、评议,以起到一题多用)(四)、师生共同小结首先,应让学生思考以下问题,并回答:1形式上比较复杂的一元一次方程是怎样求解的?2它的解法的主要思路是什么?3它的解法的主要步骤是什么?结合学生的回答,教师应指出:解一元一次方程的指导思想是把原方程化为ax=b(a0)的形式其解法可分为两大步:一步是化为ax=b的形式,再一步是解方程ax=b在计算或变形时,要养成良好的学习习惯,注意书写格式的规范性,避免在去分母,去括号、移项时易犯的错误七、练习设计解下列方程:117(2-3y)-5(12-y)8(1-7y);25(z-4)-7(7-z)-912-3(

21、9-z);33(x-7)-29-4(2-x)=22;432x-1-3(2x-1)+3=5;八、板书设计 5.1一元一次方程(5)(一)知识回顾 (三)例题解析 (五)课堂小结 例1、例2(二)观察发现 (四)课堂练习 练习设计九、教学后记一、课题 5.1一元一次方程(6)二、教学目标1使学生灵活运用解方程的一般步骤解题;2培养学生观察、分析、转化的能力,提高他们综合解题的能力三、教学重点和难点重点:灵活地运用解题步骤;难点:如何在“灵活”二字上下功夫四、教学手段引导活动讨论五、教学方法启发式教学六、教学过程(一)、从学生原有的认知结构提出问题请学生回答:一元一次方程的解题的一般步骤是什么?针对

22、学生的回答,教师应指出:由于方程的形式不同,解方程时,不一定非按这样的顺序不可,其中有些步骤也可能用不到,可以灵活运用(二)、讲授新课例1 解方程4(x-3)=32针对本题提问:1本题应如何解?2怎样解较好?(分别请两名学生板演,然后比较他们的解法哪个较好)解法1:4x-12=32,4x=44,x=11解法2:4(x-3)=32x-3=8,x=11通过比较,得出解法2比解法1好分析本题时可向学生提问:先经过怎样的变形可使运算简便?(结合学生的回答,教师应指出:将方程的分母运用分数的基本性质化为整数后,再去分母可使运算简便)解:原方程化为去分母,得30x-7(17-20x)=21,去括号,得30

23、x-119+140x=21,合并同类项,得170x=140,系数化1,得(以上过程,学生口述,教师板书)(首先让学生思考如何解答可使运算简便?结合学生的回答,教师适当点拨)分析:先去括号,再去分母方法较好解:去括号,得去分母,得12x-6x+3x-3=8x-8,移项,得12x-6+3x-8x=-8+3,合并同类项,得x=-5(请学生观察并思考本题,怎样去括号较为合理呢?结合学生的回答,教师作适当补充)分析:此题若先去括号显然不妥,如先去分母,同时也就去掉大括号,原方程化为:两边乘以3,可去掉中括号两边再乘以4,可去掉小括号解:方程两边乘以2,得方程两边乘以3,得方程两边都乘以4,得系数化1,得

24、 x=5(例3、例4的解答过程均采用学生口述,教师板演来完成,同时在解答过程,若学生某一步骤感到困难,教师应做适当引导)针对诸如例2、例3、例4这样的形式上比较复杂的方程,教师应提醒学生:在求解时,应注意分析方程的结构特点,灵活地安排解题步骤;同时,由于这类题目步骤繁多,容易出错,故学生必须检验(三)、巩固练习解下列方程:(四)、师生共同小结首先,让学生回答:学习了本节课的内容后,你的收获都有哪些?其次,教师结合学生的回答还应进一步指出:解方程的指导思想即把原方程化为ax=b(a0)的形式,这里,化为ax=b的三个步骤(去分母、去括号、合并同类项)可以灵活运用,要注意题目的特点,择优从之七、练

25、习设计解下列方程:P123 1、2、3题八、板书设计 5.1一元一次方程(6)(一)知识回顾 (三)例题解析 (五)课堂小结 例1、例2(二)观察发现 (四)课堂练习 练习设计九、教学后记一、课题 5.2一元一次方程的应用(1)二、教学目标1提高学生列方程解和、差、倍、半问题的能力,使学生注意所列方程中的单位要统一;2培养学生解等积变形问题的能力三、教学重点和难点重点:列方程解等积变形问题难点:等积变形问题中找等量关系四、教学手段引导活动讨论五、教学方法启发式教学六、教学过程(一)、从学生原有的认知结构提出问题1列方程解应用题的一般步骤是什么?2已知甲比乙多5个:(1)如果乙有a个,则甲有几个

26、?(2)用等式表示甲、乙间的数量关系(甲-5=乙;甲-乙=5;甲=乙+5,三者之中答出一个即可)教师强调:由此题所列等式可以看到,“多的”应当减才能等于“少的”,或“少的”应当加才等于“多的”列方程解应用题,不仅要注意单位在书写方面的要求,而且更要注意方程中的单位是否统一本节课,学习如何利用一元一次方程来解决有关和、差、倍、半问题及等积变形问题(二)、讲授新课药水原有多少升?师生共同分析:1由学生审题并找出已知量、未知量?不是一回事(学生答)3让学生找出题中存在的相等关系以上问题,若学生在回答时有困难,教师应做适当点拨解:(学生口述,教师板书)设这瓶药水原有x升所以 x=12答:这瓶药水原有1

27、2升不是一回事例2 某工厂锻造直径为60毫米,高20毫米的圆柱形零件毛坯,需要截取直径40毫米的圆钢多长?师生共同分析:这是一个有关体积方面的应用问题那么圆柱体的体积公式是什么呢?(圆柱体积=底面积高)由学生审题并找出题中的已知量、未知量,此时教师要讲授锻造的意义,使学生明确锻造时,虽然钢的长度和底面直径变了,但体积没有变化然后请学生说出本题中的相等关系(圆钢的体积=零件毛坯的体积)设需要截取的圆钢的长度为x毫米,再分析相等关系的左边和右边,便可得下表解:设需要截取的圆钢长度为x毫米依题意,得解方程 400 x=18 000所以 x=245答:需截取的圆钢的长是45毫米(解答过程,学生口述,教

28、师板书)(三)、课堂练习1圆柱(1)的底面直径为10厘米,高为18厘米;圆柱(2)的底面直径为8厘米已知圆柱(2)的体积是圆柱(1)的体积的1.5倍,求圆柱(2)的高2将内径为200毫米的圆柱形水桶中的满桶水倒入一个内部长、宽、高分别为300毫米、300毫米、80毫米的长方体铁盒,正好倒满,求圆柱形水桶的水高(精确到1毫米3.14)3某校初一有学生153人,分成甲、乙、丙三个班,乙班比丙班多5人而比甲班少8人,问三个班各有学生多少人?(四)、师生共同小结在师生共同回顾本节课所学的内容的基础上,教师指出:(1)解决和、差、倍、分问题,需注意所列方程两边的单位要统一这在其它类型题中也会经常遇到;(

29、2)对于等积变形问题,解决它的关键是明确锻造前后的体积相等,同时要记准求圆柱体的体积公式,不要把直径当成半径七、练习设计1长方体甲的长、宽、高分别是260毫米,150毫米,325毫米,长方体乙的底面积是130130毫米2(长、宽都是130毫米)已知甲的体积是乙的体积的2.5倍,求乙的高2内径为120毫米的圆柱形玻璃杯,和内径为300毫米,内高为32毫米的圆柱形玻璃盘可以盛同样多的水,求玻璃杯的内高3用内径为 90毫米的圆柱形玻璃杯(已装满水)向一个内底面积为 131131毫米2,内高是81毫米的长方体铁盒倒水,当铁盒装满水时,玻璃杯中水的高度下降多少?4某工厂三个车间共 180人,第二车间人数

30、是第一车间人数的3倍还多1人,第三车间人数是第一车间人数的一半还少1人,求三个车间各多少人?5有一根铁丝,第一次用去它的一半少1米,第二次用去剩下的一半多1米,结果还剩下2.5米,问这根铁丝原长多少米?八、板书设计 5.2一元一次方程的应用(2)(一)知识回顾 (三)例题解析 (五)课堂小结 例1、例2(二)观察发现 (四)课堂练习 练习设计九、教学后记一、课题 5.2一元一次方程的应用(3)二、教学目标1使学生理解并掌握列一元一次方程解相遇问题的根据及方法;2进一步提高学生分析问题和解决问题能力三、教学重点和难点重点:列方程解相遇问题难点:正确地寻找相遇问题中的相等关系四、教学手段引导活动讨

31、论五、教学方法启发式教学六、教学过程(一)、从学生原有的认知结构提出问题上小学时,我们学习过行程问题,在行程问题中,行进的速度,行进的时间和在这段时间内所走的路程这三个量之间有什么关系?可能出现几个不同的关系式?(这里设行进速度为v,行进时间为t,在这段时间内所走的路程为s,今天学习列方程解行程问题行程问题类型很多,首先学习比较简单的一种类型相遇问题(二)、师生共同分析相遇问题例 甲、乙两站的路程为360千米,一列快车从乙站开出,每小时行驶72千米;一列慢车从甲站开出,每小时行驶48千米(1)两列火车同时开出,相向而行,经过多少小时相遇?(2)快车先开25分钟,两车相向而行,慢车行驶了多少小时

32、两车相遇?由学生审题并找出已知量、未知量及相等关系(1)已知量:甲、乙两站间路程为360千米,慢车每小时行驶48千米,快车每小时行驶72千米未知量:两列火车同时相向开出,多少小时相遇?画示意图,直观寻找数量关系相等关系:慢车行程+快车行程=两站间的距离解:(学生口答,教师板书)设两车行驶了x小时相遇,则慢车行驶了48x千米,快车行驶了72x千米,根据题意,得48x+72x=360,解方程 120 x=360,x=3答:两车行驶了3小时相遇而后转化为与(1)问完全相同的情况画出示意图,寻找数量关系解:设慢车行驶x小时两车相遇,则慢车行驶了48x千米,快车先解这个方程,得 120x+30=3601

33、20x=330答:慢车行驶了2小时45分钟两车相遇(三)、课堂训练1由例题的条件引出以下问题(1)若慢车早出发1小时,问快车出发后几小时两车相遇,怎样列方程?(由学生回答)(48x+48+72x=360)(2)若快车上午9点30分出发,慢车上午11点出发,问几点钟两车相遇?(由学生回答)(设慢车出发后x小时两车相遇,则721.5+72x+48x=360)2要铺设一条650米长的地下管道,由甲、乙两个工程队从两头相向施工,甲队每天铺设48米,乙队每天比甲队多铺设22米,而乙队比甲队晚开工1天,问乙队开工多少天后,两队完成铺路任务的80?(设乙队开工x天后,甲已开工(x+1)天,则48(x+1)+

34、(48+22)x=65080)3A,B两地相距15千米,甲每小时行5千米,乙每小时行4千米,甲、乙两队分别从A,B出发,背向而行,几小时后,两人相距60千米?(设背向而行x小时后,甲、乙丙人相距60千米,则5x+4x+15=60)(四)、师生共同小结在师生共同回顾本节课所学的内容的基础上,教师应强调:1相遇问题,列方程依据的等量关系是,相遇时,两车走的距离等于全路程;2行程问题一般利用直线型示意图表示各数量之间的关系,以便列出方程3要注意出发的时间,同时时间单位要注意统一,用“时”或“分”均可,但答案要与所问的一致七、练习设计1甲、乙两站间的路程为284千米一列慢车从甲站开往乙站,每小时行驶4

35、8千米;慢车行驶了1小时后,另有一列快车从乙站开往甲站,每小时行驶70千米快车行驶了几小时与慢车相遇?2甲、乙骑自行车同时从相距65千米的两地相向而行,2小时相遇甲比乙每小时多骑2.5千米,求乙的时速3甲、乙两架飞机同时从相距750千米的两个机场相向飞行,飞了半小时到达同一中途机场,如果甲机的速度是乙机的速度的1.5倍,求乙机的速度4一列客车长200米,一列货车长280米,在平行的轨道上相向行驶,从相遇到车尾离开经过18秒,客车与货车的速度比是53,问两车每秒各行驶多少米?(思考题)一旅客乘坐的火车以每小时40千米的速度前进,他看见迎面来的火车用了3秒时间从他身边驶过已知迎面而来的火车长75千

36、米,求它的速度八、板书设计 5.2一元一次方程的应用(3)(一)知识回顾 (三)例题解析 (五)课堂小结 例1、例2(二)观察发现 (四)课堂练习 练习设计九、教学后记一、课题 5.2一元一次方程的应用(4)二、教学目标1使学生会分析追及问题,明确追及问题列方程所依据的相等关系,并会解一般的追及问题;2进一步提高学生的分析问题和解决问题的能力;3在教学过程中,培养学生养成正确思考、善于思考的良好习惯三、教学重点和难点重点:列方程解追及问题难点:寻找追及问题中的相等关系四、教学手段引导活动讨论五、教学方法启发式教学六、教学过程(一)、从学生原有的认知结构提出问题1对于相遇问题,列方程依据的等量关

37、系是什么?2解有关行程问题的应用题需注意什么?此时,教师指出:关于行程问题,我们已经学习了相遇问题,今天学习列方程解追及问题,追及问题比较复杂,需要深入地分析才能找出等量关系(二)、师生共同分析追及问题例1 一队学生去校外进行军事训练他们以5千米时的速度行进,走了18分的时候,学校要将一个紧急通知传给队长通讯员从学校出发,骑自行车以14千米时的速度按原路追上去通讯员用多少时间可以追上学生队伍?画示意图设通讯员追上学生需x小时请同学寻找一个相等关系相等关系:通讯员行进路程=学生行进路程解:(学生回答,教师板书)设通讯员用x小时可以追上学生队伍,根据题意,得例2 一条环形跑道长400米,甲练习骑自

38、行车,平均每分钟行驶550米,乙练习赛跑,平均每分钟跑250米两人同时、同地、同向出发,经过多少时间,两人首次相遇首先应引导学生细审题意:注意三个同字:同时,同地,同向其次,在启发学生寻找题中存在的相等关系时,指出:甲、乙二人第一次相遇时,甲比乙多行了一圈(即400米)相等关系:甲走路程-乙走路程=400米解:(学生回答,教师板书)设甲乙二人行x分钟后首次相遇,依题意,得55x-250x=400,解方程 300x=400,此时可做引伸,若二人背向而行,甲、乙首次相遇时,两人所行的距离之间存在怎样的关系呢?(两人所行的距离之和是一周(即400米)(三)、课堂练习1甲、乙两人练习100米赛跑,甲每

39、秒跑7米,乙每秒跑6. 5米若甲让乙先跑1秒,甲经过几秒可以追上乙?2甲、乙两人都从A地去B地甲步行,每小时走5千米,先走1.5小时;乙骑自行车,乙走了50分,两人同时到达目的地,问乙每小时骑多少千米?3敌、我相距28千米,得知敌军1小时前以每小时8千米的速度逃跑,现在我军以每小时14千米的速度追敌军,问几小时可以追上敌军?(四)、师生共同小结在师生共同回顾本节课所讲内容的基础上,教师指出:1解道及问题,找等量关系时,要注意分析从甲出发到追上乙的这段时间里,甲比乙多行的距离;2追及问题以及上节课学习的相遇问题,都可称为行程问题,解决此类问题的基本思路是,审题后,要正确地画出直线形直观示意图,根

40、据示意图寻找相等关系,布列方程,解方程求出问题的答案;3在行程问题中还有求两车相距问题,慢车在快车之后行驶中的相距问题;顺流、逆流与船速水速关系问题等,这些问题请同学们课下结合课本上的习题进行思考七、练习设计1一队学生去校外参加劳动,以4千米/时的速度步行前往走了半小时,学校有紧急通知要传给队长,通讯员骑自行车以14千米/时的速度按原路追上去通讯员要多少分才能追上学生队伍?2甲、乙两人住处之间的路程为30千米某天他俩同时骑摩托车出发去某地,甲在乙后面,乙每小时骑52千米,甲每小时骑70千米经过多少时间甲赶上乙?3甲、乙二人相距40千米,甲先出发1.5小时乙再出发,甲在后,乙在前,二人同向而行甲

41、的速度是每小时8千米,乙的速度是每小时6千米,甲出发后几小时可追上乙?(思考题)一队步兵正以5.4千米/时的速度匀速前进通讯员从队尾骑马到队头传令后,立刻返回队尾,总共用了10分钟,如果通讯员的速度是21.6千米/时,求步兵列的长是多少?八、板书设计 5.2一元一次方程的应用(4)(一)知识回顾 (三)例题解析 (五)课堂小结 例1、例2(二)观察发现 (四)课堂练习 练习设计九、教学后记一、课题 5.2一元一次方程的应用(5)二、教学目标1使学生掌握解调配问题的方法;2通过对本类型题的学习和分析,进一步提高学生分析问题和解决问题的能力;3培养学生养成正确思考、善于思考的良好习惯三、教学重点和难点重点:列方程解调配问题难点:搞清调动后的变化情况四、教学手段引导活动讨论五、教学方法启发式教学六、教学过程(一)、从学生原有的认知结构提出问题(投影)有两个生产队收获粮食第一生产队共有a人,第二生产队共有b人,为了赶在雨季来临之前,把粮食收获完,上级调拨10人去支援他们收获现已知调往第一生产队有m人,用代数式表示:调往第二生产队有多少人?此时,第一、第二生产队各有多少人?在学生对上述问题回答的基础上,教师指出,本节课我们来学习列方程解有关调配问题,解此类问题要特别注意的是按着怎样的要求调动的(二)、师生共同分析调配问题例 在甲处劳动的有27人,在乙处劳

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 教育专区 > 其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服