1、23.1 一元二次方程教学目标: 1、知道一元二次方程的定义,能熟练地把一元二次方程整理成一般形式(0)2、在分析、揭示实际问题的数量关系并把实际问题转化为数学模型(一元二次方程)的过程中使学生感受方程是刻画现实世界数量关系的工具,增加对一元二次方程的感性认识。3、会用试验的方法估计一元二次方程的解。重点难点:1一元二次方程的意义及一般形式,会正确识别一般式中的“项”及“系数”。2 理解用试验的方法估计一元二次方程的解的合理性。教学过程: 一 做一做:1问题一 绿苑小区住宅设计,准备在每两幢楼房之间,开辟面积为900平方米的一块长方形绿地,并且长比宽多10米,那么绿地的长和宽各为多少?分析:设
2、长方形绿地的宽为x米,不难列出方程x(x10)900整理可得 x210x900=0.(1)2问题2学校图书馆去年年底有图书5万册,预计到明年年底增加到7.2万册.求这两年的年平均增长率.解:设这两年的年平均增长率为x,我们知道,去年年底的图书数是5万册,则今年年底的图书数是5(1x)万册;同样,明年年底的图书数又是今年年底的(1x)倍,即5(1x)(1x)5(1x)2万册.可列得方程5(1x)2=7.2,整理可得 5x210x2.2=0.(2)3思考、讨论这样,问题1和问题2分别归结为解方程(1)和(2).显然,这两个方程都不是一元一次方程.那么这两个方程与一元一次方程的区别在哪里?它们有什么
3、共同特点呢?( 学生分组讨论,然后各组交流 )共同特点:(1) 都是整式方程 (2) 只含有一个未知数 (3) 未知数的最高次数是2二、 一元二次方程的概念上述两个整式方程中都只含有一个未知数,并且未知数的最高次数是2,这样的方程叫做一元二次方程).通常可写成如下的一般形式:ax2bxc0(a、b、c是已知数,a0)。 其中叫做二次项,叫做二次项系数;叫做一次项,叫做一次项系数,叫做常数项。.三、 例题讲解与练习巩固1例1下列方程中哪些是一元二次方程?试说明理由。(1) (2) (3) (4) 2例2 将下列方程化为一般形式,并分别指出它们的二次项系数、一次项系数和常数项:1) 2)(x-2)
4、(x+3)=8 3) 说明: 一元二次方程的一般形式(0)具有两个特征:一是方程的右边为0;二是左边的二次项系数不能为0。此外要使学生意识到:二次项、二次项系数、一次项、一次项系数、常数项都是包括符号的。3例3 方程(2a4)x2 2bx+a=0, 在什么条件下此方程为一元二次方程?在什么条件下此方程为一元一次方程?本题先由同学讨论,再由教师归纳。解:当2时是一元二次方程;当2,0时是一元一次方程;4例4 已知关于x的一元二次方程(m-1)x2+3x-5m+4=0有一根为2,求m。分析:一根为2即x=2,只需把x=2代入原方程。5练习一 将下列方程化为一般形式,并分别指出它们的二次项系数、一次项系数和常数项 2x(x-1)=3(x-5)-4 练习二 关于的方程,在什么条件下是一元二次方程?在什么条件下是一元一次方程?本课小结:1、只含有一个未知数,并且未知数的最高次数是2的整式方程,叫做一元二次方程。2、一元二次方程的一般形式为(0),一元二次方程的项及系数都是根据一般式定义的,这与多项式中的项、次数及其系数的定义是一致的。3、在实际问题转化为数学模型( 一元二次方程 ) 的过程中,体会学习一元二次方程的必要性和重要性。布置作业:课本第27页习题1、2、3