1、第六章概率初步1.能区分什么是确定事件和不确定事件,感受生活中的随机现象,并体会不确定事件发生的可能性大小.2.通过试验感受不确定事件发生的频率的稳定性,理解概率的意义.3.能求一些简单不确定事件发生的概率.4.能设计符合要求的简单概率试验.利用不确定事件发生的频率的稳定性理解概率的意义;能求一些简单不确定事件发生的概率.能判断游戏是否公平,掌握概率与面积(转盘)的关系.学会用数学知识来解决生活中的实际问题,增强创新精神和应用数学的意识,从而实现知识来源于生活,又服务于生活的转化过程.概率主要是研究现实生活中的数据和客观世界中的随机现象.它通过对数据收集、整理、描述和分析以及对事件发生的可能性
2、的刻画,来帮助人们作出合理决策.它与其他数学领域的内容有着密切联系,本章为学生提供了将各个领域内容联系起来的机会.教材先是从掷骰子入手介绍事件发生的可能性的大小,再让学生知道事件的发生是有可能的,这也是事件发生的可能性从定性到定量的一个过渡.对事件发生的等可能性理解的好坏在一定程度上将直接关系到对后面随机事件的理解.最后教材介绍了两类概率模型(古典概型和几何概型),并要求学生能进行这两类概率的简单计算,会设计符合简单概率模型的方案.本章主要内容是感受生活中的随机现象,并能体会不确定事件发生的可能性大小,通过试验感受不确定事件发生的频率的稳定性,理解概率的意义;能求一些简单不确定事件发生的概率.
3、本章内容是以后进一步学习统计与概率的基础.本章主要涉及必然事件、不可能事件、确定事件、不确定事件等定义,事件A发生的频率及频率的稳定性、事件A发生的概率等概念.【重点】1.概率的意义.2.经历“猜测试验和收集试验数据分析试验结果验证试验结果”的过程.3.设计符合条件的简单概率模型.4.会求几类事件发生的概率.【难点】1.概率的意义.2.设计符合条件的概率模型.1.在具体情境中了解必然事件和不可能事件发生的概率,体会概率的取值在01之间.2.理解游戏规则对双方是否公平,运用概率的语言说明游戏的公平性,并能按要求设计游戏.3.通过试验,获得事件发生的频率,知道大量重复试验的频率可作为事件发生的概率
4、的估计值.4.进行简单的概率计算,了解概率的大小与面积的关系.1感受可能性1课时2频率的稳定性2课时3等可能事件的概率4课时回顾与思考1课时1感受可能性通过猜测与游戏的方式,让学生进入问题情境,切身感受什么是不可能事件、必然事件、确定事件与不确定事件,知道事件发生的可能性是有大小的.使学生在教师的指导下自主地发现问题、探究问题,获得结论,感受数学和实际生活的联系,进一步发展学生合作交流的能力和数学表达能力.通过创设游戏情境,使学生主动参与,做数学试验,增强学生的数学应用意识,初步培养学生以科学数据为依据分析问题、解决问题的良好习惯.【重点】识别必然事件、不可能事件、确定事件与不确定事件.【难点
5、】判断事件发生可能性的大小.【教师准备】多媒体课件.【学生准备】预习教材P136137.导入一:过渡语生活中,在我们身边每天都会有一些事情发生,有些事情一定不会发生,而有些事情却是不可预测到的.譬如,每天太阳从东方升起,不论刮风下雨,时光一定不会倒流,下周一下雨吗?不一定.【问题】你能猜出老师今天怎么提问同学回答问题吗?(与平时不一样,动画演示学号确定学生回答问题)动感学号:学号=45.设计意图利用学生好奇的“动感学号”激起学生的学习兴趣,为本节课打好基础,通过学生身边生活的事例引导,让学生感受生活中的事件还有这么多的情形需要探索,引发思考,使学生初步感受到“数学来源于生活”,直接切入本节课题
6、.导入二:过渡语生活中有些事情一定会发生,有些事情一定不会发生,还有些事情可能会发生、也可能不会发生,下面就让我们一起去看一看.【活动内容】猜一猜、想一想.1.随机投掷一枚均匀的骰子,掷出的点数会是10吗?2.随机投掷一枚均匀的骰子,掷出的点数一定不超过6吗?3.随机投掷一枚均匀的骰子,掷出的点数一定是1吗?处理方式1.这几个问题的答案很直接,可由学生独立完成.2.根据学生的回答,引人新课,并板书课题1感受可能性.设计意图通过问题情境的引入,引发思考,让学生感受生活中一些事件的多种变化.过渡语下面就让我们共同感受一下生活中的随机现象,并体会不确定事件发生的可能性大小吧!探究活动1三类事件思路一
7、【活动内容1】(多媒体出示)“下列事件一定发生吗?”【思考1】(1)普通玻璃杯从10米高处落到水泥地面上会破碎;(2)太阳从东方升起;(3)今天星期天,明天星期一;(4)太阳从西方升起;(5)一个数的绝对值小于0.处理方式通过“动感学号”让学生回答上述问题,引出本节的知识点,并引导学生分析总结,板书概念,其中(1),(2),(3)说明“什么是必然事件?”(4),(5)说明“什么是不可能事件?”进而让学生了解何为确定事件.设计意图分类说明可以让学生易于理解确定事件的意义,让学生学会用自己的方式理解问题,确定事件分为两类,一类是(一定会发生的)必然事件,另一类是(一定不会发生的)不可能事件.【活动
8、内容2】(多媒体出示)“下列事件一定发生吗?”【思考2】(1)掷一枚硬币,有国徽的一面朝上;(2)买彩票恰好中奖;(3)从商店买的饮料中奖;(4)通过“动感学号”找同学回答问题,你肯定被选中.处理方式让学生学会类比理解,这4件事和思考1明显不一样,它们具有不确定性,有可能发生,也有可能不发生,像这样,事先无法肯定它会不会发生,这样的事件称为不确定事件(随机事件),不确定事件发生的可能性有大有小.设计意图使学生在有趣的问题中体会不确定事件(随机事件),提高学生学习数学的兴趣,积累丰富的数学活动经验,让学生感受到数学和实际生活的联系.思路二【活动内容1】必然事件.请同学们思考,下列事件一定会发生吗
9、?说一说你的理由.(多媒体出示)(1)普通玻璃杯从10米高处落到水泥地面上会破碎;(2)太阳从东方升起;(3)豆油滴入水中,油会浮在水面上.处理方式上面的3个事件一定会发生.像这样,在一定条件下,有些事情我们事先能肯定它一定发生,这些事情称为必然事件(师板书).例如:“随机投掷一枚质地均匀的骰子,掷出的点数不超过6”就是一个必然事件.设计意图利用生活常识及课本知识,让学生体会现实生活中的必然事件,通过对这些事件的分析,理解必然事件的特点,进一步体会数学来源于生活.【活动内容2】不可能事件.请同学们思考,下列事件一定会发生吗?说一说你的理由.(多媒体出示)(1)明天太阳从西方升起;(2)一个数的
10、绝对值小于0.处理方式以上2个事件一定不会发生.像这样,有些事情我们事先能肯定它一定不会发生,这些事情称为不可能事件(师板书).例如,“掷一枚质地均匀的骰子,掷出的点数是10”就是一个不可能事件(师板书).我们把必然事件与不可能事件统称为确定事件.设计意图通过类比必然事件,结合生活常识,体会不可能事件的特点,通过分析必然事件和不可能事件,进而让学生了解什么是确定事件.【活动内容3】不确定事件.请同学们思考,下列事件一定会发生吗?说一说你的理由.(多媒体出示)(1)打开电视机,正在播放足球比赛;(2)买彩票恰好中奖;(3)从商店买的饮料中奖;(4)通过点名单找同学回答问题,“”被选中.处理方式这
11、些事件不一定会发生.比如:当我打开电视的时候,可能放我喜欢的动画片.我买饮料时,许多时候是“谢谢品尝”,在我们的生活中,也有许多事情我们无法肯定它会不会发生,这些事情称为不确定事件,也称为随机事件(师板书).例如,“掷一枚质地均匀的骰子,掷出的点数一定是1”就是不确定事件.设计意图从学生身边熟悉的事物入手,结合生活实例,理解不确定事件(随机事件)的特点.通过举例说明,不仅能提高学生的学习积极性,还能积累学生的数学活动经验,再一次感受数学来源于生活.探究活动2不确定事件发生的可能性是有大小的【活动内容】利用质地均匀的骰子和同桌做游戏,规则如下:(多媒体出示)(1)两人同时做游戏,各自掷一枚骰子,
12、每人可以掷一次骰子,也可以连续地掷几次骰子.(2)当掷出的点数和不超过10时,如果决定停止掷,那么你的得分就是所掷出的点数和;当掷出的点数和超过10时,必须停止掷,并且你的得分为0.(3)比较两人的得分,谁的得分多谁就获胜.多做几次上面的游戏,并将结果填入下表,通过这个表格我们可以看出什么结果?第1次点数第2次点数第3次点数得分第一次游戏甲14510乙549第二次游戏甲2360乙11第三次游戏甲549乙31610生活中,有许多不确定事件,它们发生的可能性有大有小,你能举出几个例子吗?处理方式同学之间做游戏,将结果记入课本表格,教师巡视指导.第一次游戏甲获胜;第二次游戏乙获胜;第三次游戏乙获胜.
13、通过掷骰子游戏的结果可以看出:一般地,不确定事件发生的可能性是有大有小的(师板书).举例:任意掷一枚质地均匀的骰子,结果是2的倍数比结果是3的倍数的可能性要大.十字路口红绿黄灯时间设置不同,黄灯的时间最短,碰到它的可能性最小不透明的袋子中有3个红球,1个白球,所有的球除颜色外,其他完全相同.从中任意摸一个球,你认为摸到哪种颜色的球的可能性较大,说说你的理由.(摸到红球的可能性大,因为红球的数量多).设计意图通过掷骰子游戏,让学生体会不确定事件的结果,会存在这样或那样的可能,而这种可能性是有大小的.让学生自己在游戏中发现知识,总结知识,接受知识会更快、更自然、印象更深刻.让学生举例说明不确定事件
14、的大小,进一步培养学生发现问题、解决问题的能力,体会数学知识在生活中的应用.探究活动3摸球游戏甲袋中有10个白球,乙袋中有10个红球,丙袋中有红球、白球共10个,且三个袋中所有的球除颜色外,完全相同.判断下列事件各是什么事件:1.从甲袋中摸到一球是红球.()2.从甲袋中摸到一球是白球.()3.从乙袋中摸到一球是红球.()4.从乙袋中摸到一球是白球.()5.从丙袋中摸到一球是红球.()6.从丙袋中摸到一球是白球.()游戏提示1.在甲、乙两袋中,摸到球的颜色是确定的,在丙袋中,摸到的球的颜色是不确定的.2.在丙袋中,如果红球和白球的数量不等,那么摸到红球的可能性与摸到白球的可能性是不一样的.3.一
15、般地,不确定事件发生的可能性是有大小的.设计意图通过摸球游戏进一步体会可能性的大小,体会数学知识在生活中的应用.通过游戏使学生体会生活中许多不确定事件发生的可能性是有大小的.同时以游戏引入知识,学生接受起来会更自然,印象会更深刻.通过亲身体验,把问题渗透到游戏中,找到求随机事件中可能性大小的方法,培养学生发现问题、解决问题的能力.1.在一定条件下,有些事情我们事先能肯定它一定发生,这些事情称为必然事件.2.有些事情我们事先能肯定它一定不会发生,这些事情称为不可能事件.3.必然事件与不可能事件统称为确定事件.4.许多事情我们无法肯定它会不会发生,这些事情称为不确定事件,也称为随机事件.5.一般地
16、,不确定事件发生的可能性是有大有小的.1.袋子里有8个红球,m个白球,3个黑球,每个球除颜色外都相同,从中任意摸出一个球,若摸到红球的可能性最大,则m的值不可能是()A.1B.3C.5D.10解析:因为从中任意摸出一个球,摸到红球的可能性最大,所以红球的数量最多,故白球不可能超过8个.故选D.2.下列事件中哪些是确定事件?哪些是不确定事件?阳历6月份只有30天;随手抛出的一个石块会落下来;明天是晴天;掷骰子掷出点数是5;1+1=2;1+1=3;我们班20号是女生;打开电视正在播放广告;刻舟求剑;拋一枚硬币,正面朝上.解:确定事件:.不确定事件:.3.口袋里有10只黑袜子,6只白袜子,8只红袜子
17、,任意摸出一只袜子,什么颜色袜子被摸出的可能性最大?解:黑袜子,因为黑袜子的数量最多.4.小明任意买一张电影票,座位号是2的倍数与座位号是5的倍数的可能性哪个大?解:根据题意,座号是2的倍数的末位数为0,2,4,6,8,而5的倍数末位数是0,5,比较可得:任意买一张电影票,得到的座号是2的倍数比是5的倍数的可能性要大.5.某路口红绿灯的时间设置为:红灯40秒,绿灯60秒,黄灯4秒.当人或车随意经过该路口时,遇到哪一种灯的可能性最大,遇到哪一种灯的可能性最小?根据什么?解:因为经过路口的红绿灯时间设置为:红灯40秒,绿灯60秒,黄灯4秒,所以绿灯时间红灯时间黄灯时间,所以遇到绿灯可能性最大,遇到
18、黄灯可能性最小.1感受可能性探究活动1三类事件探究活动2不确定事件发生的可能性是有大小的探究活动3摸球游戏一、教材作业【必做题】教材第138页习题6.1知识技能第1,2,3题.【选做题】教材第138页习题6.1数学理解第4题.二、课后作业【基础巩固】1.下列事件中,随机事件是()A.没有水分,种子发芽B.367人中至少有2人的生日相同C.在标准气压下,- 1 冰融化D.小瑛买了一张彩票获得500万大奖2.袋中有红球4个,白球若干个,它们只有颜色上的区别,从袋中随机取出一个球,如果取到白球的可能性较大,那么袋中白球的个数可能是()A.3个B.不足3个C.4个D.5个或5个以上3.(2015龙岩中
19、考)下列事件:在足球赛中,弱队战胜强队;抛掷1枚硬币,硬币落地时正面朝上;任取两个正整数,其和大于1;长为3 cm,5 cm,9 cm的三条线段能围成一个三角形.其中确定事件有()A.1个B.2个C.3个D.4个4.下列说法正确吗?为什么?(1)如果一件事发生的机会只有十万分之一,那么它就不可能发生;(2)如果一件事发生的机会达到99.9%,那么它就必然会发生;(3)如果一件事不是不可能发生的,那么它就必然发生;(4)如果一件事不是必然发生的,那么它就不可能发生.【能力提升】5.口袋中有15个球,其中白球有x个,绿球有2x个,其余为黑球.甲从袋中任意摸出一个球,若为绿球则甲获胜;甲摸出的球放回
20、袋中,乙从袋中摸出一个球,若为黑球则乙获胜;则当x=时,游戏对甲、乙双方都公平.【拓展探究】6.已知地球表面陆地面积与海洋面积的比为37.如果宇宙中飞来一块陨石落在地球上,“落在海洋里”与“落在陆地上”哪个可能性更大?【答案与解析】1.D(解析:A.是不可能事件,选项错误;B.是必然事件,选项错误;C.是不可能事件,选项错误;D.是随机事件,选项正确.故选D.)2.D(解析:因为袋中有红球4个,取到白球的可能性较大,所以袋中的白球数量大于红球数量,即袋中白球的个数可能是5个或5个以上.故选D.)3.B(解析:在足球赛中,弱队战胜强队是随机事件,不是确定事件;抛掷1枚硬币,硬币落地时正面朝上是随
21、机事件,不是确定事件;任取两个正整数,其和大于1是必然事件,是确定事件;长为3 cm,5 cm,9 cm的三条线段能围成一个三角形是不可能事件,是确定事件.综上可得只有是确定事件,共2个.故选B.)4.解:(1)是随机事件,因为机会只有十万分之一,也可能发生,故错误.(2)是随机事件,因为机会达到99.9%,也可能不发生,故错误.(3)如果一件事不是不可能发生的,可能是随机事件,故错误.(4)如果一件事不是必然发生的,可能是随机事件,故错误.5.3(解析:由题意甲从袋中任意摸出一个球,若为绿球则甲获胜;甲摸出的球放回袋中,乙从袋中摸出一个球,若为黑球则乙获胜可知,绿球与黑球的个数应相等,也为2
22、x个,列方程可得x+2x+2x=15,解得x=3.)6.解:根据题意可得:地球表面陆地面积与海洋面积的比约为37,即相当于将地球总面积分为10份,陆地面积占3份,海洋面积占7份,所以落在海洋里的可能性更大.1.本节课通过一系列游戏活动,引导学生投入到有趣的数学活动中,不仅有利于提高学生学习数学的兴趣,还可以帮助学生感受可能性的大小,发现身边的数学.让学生先通过猜想,再通过试验验证的过程,进行新知识的学习.在自主探索活动中,真正理解和掌握数学基础知识、技能,收到良好的效果.2.学生在经历“将现实问题转化成数学问题”的过程中,培养了学生动手、合作、概括能力,同时也提高了思维水平和应用数学知识解决实
23、际问题的意识.在上课过程中发现,学生对于不可能事件和确定事件的从属关系掌握不好,误把不可能事件当成不确定事件,在课后练习和辅导中应注重这方面知识的反馈和纠正.由于本节课的知识贴近生活,教师在课前除了自己多准备大量事例外,还应让学生多准备,生活中的例子虽然多,但让学生说的时候,不一定能说出来,此外,留给学生游戏实践的时间要充分,把时间还给学生,把问题留给学生,让学生去发现、去合作,然后共同解决,这对学生的学习非常有益.随堂练习(教材第138页)1.解:(1)是确定事件.(2)是不确定事件.2.解:座位号是2的倍数的可能性大.习题6.1(教材第138页)知识技能1.解:确定事件:(1)(4),不确
24、定事件:(2)(3).2.解:摸到红球的可能性大.摸到红球的可能性为=,摸到白球的可能性为=,因为,所以摸到红球的可能性大.3.解:落在白色区域的可能性大,因为白色区域的面积比红色区域和黄色区域的面积都要大.数学理解4.解:摸到红球的可能性由大到小排列为:.问题解决5.提示:策略:转出的较小的数放到右面的方格里,如转出的数是0,就放到最右面的方格里,转出的较大的数放到左面的方格里,如转出的数是9,就放到最左面的方格里.本节是七年级学生第一次接触有关概率的知识.初步学习“不可能”“必然”和“可能”的不同用法,归纳出“确定”与“不确定”这两个概念,为后面机会的“均等”与“不均等”,即概率初步知识奠
25、定基础.通过本节的学习帮助学生预测随机事件在每次试验中发生的可能性,并学会处理数据.同时也能为下几节课的学习积累活动经验,并体会事件的随机性有大有小.下列事件中,哪些是不确定事件?哪些是确定事件?一个数的平方是非负数;2016年9月1日会阳光明媚;在数学测验中,李飞把解答题都做对了;南极洲的地面温度在30 以上.解:是确定事件;是不确定事件.2频率的稳定性1.了解事件发生的等可能性及游戏规则的公平性.2.能通过试验获得事件发生的概率.3.进一步培养试验、收集试验数据和分析试验结果的能力以及提高合作的意识.通过“猜测试验和收集试验数据分析试验结果验证猜测”的过程,了解事件发生的概率有大小之分.以
26、探究式、合作式学习为主.由生活中的不确定现象引入,体会数学与人类生活的密切联系,通过对事件可能性的探索,使学生树立公平的态度和正确的世界观.【重点】事件的等可能性.【难点】体会事件发生的等可能性及发生的频率是基于大量的重复试验.第课时1.通过掷图钉等活动,经历猜测、试验、收集试验数据、分析试验结果等过程,体会数据的随机性.2.理解不确定事件(随机事件)的概念,使学生在教师的指导下自主地发现问题、探究问题,获得结论,感受数学和实际生活的联系,进一步发展学生合作交流的能力和数学表达能力.1.通过试验让学生理解当试验次数较大时,试验频率稳定在某一常数附近,并据此能估计出某一事件发生的频率.2.在活动
27、中进一步发展学生合作交流的意识与能力,发展学生的辩证思维能力.通过对实际问题的分析,培养使用数学的良好意识,激发学习兴趣,体验数学的应用价值.进一步体会“数学就在我们身边”,发展学生应用数学的能力.【重点】通过试验让学生理解当试验次数较大时,试验的频率具有稳定性,并据此能初步估计出某一事件发生的可能性大小.【难点】大量重复试验得到频率的稳定值的分析.【教师准备】多媒体课件.【学生准备】预习教材P140141.导入一:过渡语同学们,我国彩民通过购买彩票几乎每天都会产出一个或几个百万富翁,想知道他们是怎样选号的吗?每当你路过彩票中心是不是会看到一群人聚精会神盯着大奖的走势图呢?他们究竟在找什么呢?
28、课件展示:其实通过观察,我们能够发现数字的出现机会是稳定的,所以彩民朋友常常会通过观察其走势寻找可能出现的号码,然后通过组合找到自己想买的号,由于得大奖机会非常小,所以只会有少数人比较幸运.有人统计,在福彩30选7中,数字2在30天中出现的次数是6次,在60天中出现的次数是13次,在100天中出现的次数是19次,在一年中出现的次数是75次,由此可知,随着天数的增加数字2出现的机会约为五分之一,其他数字也一样,出现的频率也是稳定的.下面我们来做个试验探究一下吧.请拿出你们准备的图钉.处理方式以学生比较熟悉的彩票为背景,结合抛图钉游戏展开交流,引出钉尖朝上和钉尖朝下的可能性不同的猜测,进而产生通过
29、试验验证的想法.设计意图培养学生猜测游戏结果的能力,并从中初步体会试验结果可能性有可能不同.让学生体会猜测结果,这是很重要的一步,我们所学到的很多知识,都是先猜测,再经过多次的试验得出来的.而且由此引出的猜测需要通过大量的试验来验证.这就是我们本节课要来研究的问题.导入二:过渡语生活中我们经常遇到不确定事件,它们发生的可能性大小不同,通过做试验可以判断事件发生可能性的大小,这节课我们就来学习频率的稳定性.小军和小凡在玩掷图钉的游戏,掷一枚图钉,落地后,通常会出现几种情况?它们是等可能的吗?那么你认为钉尖朝上和钉尖朝下的可能性一样大吗?如果不一样,你认为哪种的可能性大?处理方式同学们进行了大胆的
30、猜测,并且有些同学还对自己的见解进行了解释.引出钉尖朝上和钉尖朝下的可能性不同的猜测,进而产生通过试验验证的想法.设计意图学生对生活中存在的问题进行猜测,并体会试验结果的可能性有可能不同,开始体会事件发生的可能性有大有小,需要通过大量试验来验证,这就为下一环节用试验估算事件发生频率打好基础.探究活动1频率的试验1从一定高度落下的图钉,落地后可能钉尖朝上,也可能是钉尖朝下.你估计哪种事件发生的可能性大.(1)现在两人一组做20次掷图钉游戏,并将数据记录在下表中:试验总次数钉尖朝上的次数钉尖朝下的次数钉尖朝上的频率钉尖朝下的频率注意事项:1.做试验一定要注意安全,不要受伤.2.图钉必须从同一高度自
31、由落下,保证着地时的随机性和试验的可重复操作性;两人一组要进行适当的分工.处理方式引导学生明确钉尖朝上和钉尖朝下的频率大小,领会数学是来源于生活,进一步了解不确定事件的特点,发展随机观念,培养求真意识;在动手操作的过程中认识到频率的稳定性.设计意图通过分组试验让学生体验不确定事件发生的可能性的发现过程,验证之前的猜想.当试验次数较少时,规律不明显,甚至与开始的猜测有矛盾,让学生动脑得出造成这种结果的原因是试验的次数不够,培养学生发现问题、解决问题的能力.介绍频率的定义:在n次重复试验中,不确定事件A发生了m次,则比值称为事件A发生的频率.(2)累计全班同学的试验结果,并将试验数据汇总填入下表:
32、试验总次数n204080120160200240280320360400钉尖朝上的次数m钉尖朝上的频率处理方式分小组试验,小组内成员要明确自己的分工任务,教师适时加以指导.试验结束要及时汇总试验数据,对试验结果加以统计.设计意图学生经过试验对这一不确定事件发生的频率有了全面地认识,通过试验进一步使学生明确钉尖朝上和钉尖朝下的频率大小,在动手操作的过程中认识到频率的稳定性,也培养了学生的小组合作能力,动手能力和思维水平.探究活动2频率的试验2(3)请同学们根据已填的表格,完成下面的折线统计图.出示准备好的折线统计图与学生所作的折线统计图进行比较.(4)小明共做了400次掷图钉游戏,并记录了游戏的
33、结果,绘制了下面的折线统计图,观察图象,钉尖朝上的频率的变化有什么规律?【问题】从折线统计图的绘制过程中,你发现了什么规律?处理方式引导学生思考、观察.学生可能会得出在试验次数很大时,钉尖朝上的频率都会在一个常数附近摆动,即钉尖朝上的频率具有稳定性这样的结论.此时教师可以在此基础上强调并总结:在试验次数很大时,钉尖朝上的频率都会在一个常数附近摆动,即钉尖朝上的频率具有稳定性.议一议问题1通过上面的试验,你认为钉尖朝上和钉尖朝下的可能性一样大吗?你是怎么想的?问题2小军和小凡一起做了1000次掷图钉的试验,其中有640次钉尖朝上,据此,他们认为钉尖朝上的可能性大.你同意他们的说法吗?处理方式学生
34、通过小组之间的合作、交流,绘制折线统计图,使学生学会独立处理数据.通过观察图象分析,产生初步判断,再通过观察折线图进一步验证猜想.在议一议中,学生通过小组讨论交流后得出结论.设计意图通过绘制折线统计图,进一步对数据进行处理,进而得出结论,也就突出了本节课的重点.并且也认识到频率的稳定性.在议一议环节,学生进行分组讨论,进一步加深对频率稳定性的认识,初步体会用频率可以估计事件发生的可能性的大小.探究活动3即时训练,发展思维过渡语通过本节课的学习,同学们都有了一定的收获!收获的效果如何?让我们一起检测一下.【活动内容】某射击运动员在同一条件下进行射击,结果如下表所示:射击总次数n102050100
35、2005001000击中靶心的次数m9164188168429861击中靶心的频率(1)完成上表;(2)根据上表,画出该运动员击中靶心的频率的折线统计图;(3)观察画出的折线统计图,击中靶心的频率的变化有什么规律?处理方式学生做题时教师检查,及时给个别学困生辅导,鼓励学生进行小组合作交流,做完的学生教师当堂批改,指出对错.最后小组进行自我评价,然后互评,对表现突出的小组进行表扬.设计意图本题主要是衔接本节课的探索试验题,难度不大,可以独立完成.使学生形成分析数据、计算频率、绘制图象、归纳总结的数学思维,同时进一步体会频率的稳定性.知识拓展不确定事件发生的可能性是有大小的,抛掷图钉落地后钉尖朝上
36、和朝下的可能性不同,结果只能通过做大量的重复试验才能得到.1.在n次重复试验中,不确定事件A发生了m次,则比值称为事件A发生的频率.2.在试验次数很大时,钉尖朝上的频率都会在一个常数附近摆动,即钉尖朝上的频率具有稳定性.1.一个不透明的盒子里有n个除颜色外其他完全相同的小球,其中有6个黄球.每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球试验后发现,摸到黄球的频率稳定在30%,那么可以推算出n大约是()A.6B.10C.18D.20解析:根据题意得=30%,解得n=20,所以这个不透明的盒子里大约有20个除颜色外其他完全相同的小球.故选D.2.掷一枚质地均匀的
37、硬币10次,下列说法正确的是()A.每两次必有1次正面向上B.可能有5次正面向上C.必有5次正面向上D.不可能有10次正面向上解析:因为一枚质地均匀的硬币只有正反两面,所以不管抛多少次,硬币正面朝上的可能性都是,所以掷一枚质地均匀的硬币10次,可能有5次正面向上.故选B.3.在科学课外活动中,小明同学在相同的条件下做了某种作物种子发芽的试验,结果如下表所示:种子数(个)100200300400发芽种子数(个)94187282376由此估计这种作物种子的发芽率约为.(精确到1%)解析:=0.93994%.故填94%.4.某商场为了吸引顾客,举行抽奖活动,并规定:顾客每购买100元的商品,就可以随
38、机抽取一张奖券,抽得奖券“紫气东来”“花开富贵”“吉星高照”,就可以分别获得100元、50元、20元的购物券,抽得“谢谢惠顾”不赠购物券;如果顾客不愿意抽奖,可以直接获得购物券10元.小明购买了100元的商品,他看到商场公布的前10000张奖券的抽奖结果如下:奖券种类紫气东来花开富贵吉星高照谢谢惠顾出现张数(张)500100020006500(1)求“紫气东来”奖券出现的频率;(2)请你帮助小明判断,抽奖和直接获得购物券,哪种方式更合算?说明理由.解:(1)=或5%.(2)平均每张奖券获得的购物券金额为100+50+20+0=14(元).因为1410,所以选择抽奖更合算.第1课时探究活动1频率
39、的试验1探究活动2频率的试验2探究活动3即时训练,发展思维一、教材作业【必做题】教材第142页习题6.2知识技能第1题.【选做题】教材第142页习题6.2数学理解第2题.二、课后作业【基础巩固】1.某种彩票的中奖机会是1%,下列说法正确的是()A.买一张这种彩票一定不会中奖B.买一张这种彩票一定会中奖C.买100张这种彩票一定会中奖D.当购买彩票的数量很大时,中奖的频率稳定在1%2.在做图钉落地的试验中,正确的是()A.甲做了4000次,得出钉尖触地的机会约为46%,于是他断定在做第4001次时,钉尖肯定不会触地B.乙认为一次一次做,速度太慢,他拿来了大把材料,形状及大小都完全一样的图钉,随意
40、朝上轻轻抛出,然后统计钉尖触地的次数,这样大大提高了速度C.老师安排每位同学回家做试验,图钉自由选取D.老师安排同学回家做试验,图钉统一发(完全一样的图钉).同学交来的结果,老师挑选他满意的进行统计,他不满意的就不要3.在地面上有一组平行线,相邻两条平行线的距离都是5 cm,将长为3 cm的针任意投向这组平行线,下表是九年级某班同学合作完成投针试验后统计的数据.投针次数1006001000250035005000针与线相交的次数4828145486113721901相交的频率(1)分别求出表格中各相交频率的大小;(2)在试验次数很大时,频率应稳定于;(3)根据表格中试验频率的变化,说明在题设的
41、情况下,针与平行线相交与不相交的可能性.【能力提升】4.在一个不透明的袋子中,红色、黑色、白色的玻璃球共有60个,除颜色外,形状、大小、质地等完全相同.小刚通过多次摸球试验后发现其中摸到红色、黑色球的频率稳定在15%和45%,则口袋中白色的球的个数很可能是个.【拓展探究】5.一粒木质中国象棋棋子“兵”,它的正面雕刻一个“兵”字,反面是平的.将它从一定的高度掷下,落地反弹后可能是“兵”字面朝上,也可能是“兵”字面朝下.由于棋子的两面不均匀,因此某试验小组做了棋子下掷试验,试验结果如下表:试验次数(n)20406080100120140160“兵”字面朝上的次数(m)143847526678相应的
42、频率0.70.450.590.520.560.55(1)请将数据表补充完整;(2)根据上表画出“兵”字面朝上的频率分布折线统计图;(3)试验继续进行下去,根据上表的数据,这个试验的频率将趋于稳定,这个稳定值是多少?【答案与解析】1.D(解析:A.因为中奖机会是1%,可能性较小,但也有可能发生,故本选项错误;B.买1张这种彩票中奖机会是1%,即买1张这种彩票中奖的机会很小,故本选项错误;C.买100张这种彩票不一定会中奖,故本选项错误;D.当购买彩票的数量很大时,中奖的频率稳定在1%,故本选项正确.故选D.)2.B(解析:A.在做第4001次时,钉尖可能触地,也可能不触地,故错误,不符合题意;B
43、.符合模拟试验的条件,正确,符合题意;C.应选择相同的图钉,再类似的条件下试验,故错误,不符合题意;D.所有的试验结果都有可能发生,也有可能不发生,故错误,不符合题意.故选B.)3.解:(1)自左向右依次填写:0.48,0.468,0.454,0.344,0.392,0.38.(2)0.40(3)针与平行线相交的可能性为0.4,不相交的可能性为0.6.4.24(解析:因为小刚通过多次摸球试验后发现其中摸到红色、黑色球的频率稳定在15%和45%,所以口袋中白色球的个数很可能是60(1- 15%- 45%)=24(个).)5.解:(1)从左向右依次填:180.630.5588(2)折线图如图所示.
44、(3)根据表中数据,试验频率分别为0.7,0.45,0.63,0.59,0.52,0.55,0.56,0.55,稳定在0.55左右,故这个稳定值为0.55.1.精心选择素材,合理进行拓展应用.本节课教材中的试验为学生体会随机事件发生的频率具有稳定性提供了充足的依据,所以设计本节课件时选用了教材中的例子,更能体现本节的教学重点.在教学中引导学生进行猜想、试验、分析、交流、发现、应用,学生在操作、思考、交流中不断地发现问题,解决问题,特别是学生的学习活动采取多样化的形式,激发了学生的合作意识、动手操作意识.2.以学生活动为主体,开展合作交流活动,创设高效课堂.相信学生,并为学生提供充分展示自己的机会,在教师的组织引导下,以自主探究、合作交流的形式让学生思考问题,培养学生动手、动脑、动口能力,结合生活中的问题开发学生潜在智力因素,使学生真正成为学习的主体.3.学生在试验中发现规律,总结规律,应用规律.学生通过试验学会了应用试验的方法去收集数据、分析数据、整理数据,最后得到结论,真正体会和感受了事件的不确定性以及频率的稳定性.在小组交流时没有关注到后进生,造成一些后进生没有参加到小组的讨论与交流,过