1、1.3线段的垂直平分线(2)1、经历折纸和作图、猜想、证明的过程,能够证明三角形三边垂直平分线交于一点2、经历猜想、探索,能够作出以a为底,h为高的等腰三角形3、经历探索、猜测、证明的过程,进一步发展学生的推理证明意识和能力体验解决问题的方法,发展实践能力和创新意识 教学重点、难点 重点:1、能够证明与线段垂直平分线相关的结论 2、已知底边和底边上的高,能利用尺规作出等腰三角形 难点:证明三线共点是难点.教法及学法指导:学生在证明三角形三边垂直平分线交于一点时可能也较抽象教学时,教师对此不要操之过急,应逐步引导,学生对它的理解要有一个过程,所以确立本节应用“启迪诱导自主探究”教学模式,课前准备
2、:制作课件.教学过程:一、提出问题,引入新课教师提问:“师习题16的第1题:利用尺规作三角形三条边的垂直平分线,当作完此题时你发现了什么?(教师可用多媒体演示作图过程)”“三角形三边的垂直平分线交于一点”、“这一点到三角形三个顶点的距离相等”等都是学生可以发现的直观性质.下面请同学们剪一个三角形纸片,通过折叠找出每条边的垂直平分线,观察这三条垂直平分线,你是否发现同样的结论?与同伴交流学生会有和习题16有着同样的结论教师质疑:“这只是用我们的眼睛观察到的,看到的一定是真的吗?我们还需运用公理和已学过的定理进行推理证明,这样的发现才更有意义”这节课我们来学习探索和线段垂直平分线有关的结论板演题目
3、:132线段垂直平分线(二)设计意图:让学生利用自己的动手体会三类三角形三条边的垂直平分线交于一点的正确性. 上述活动中,教师要注意多画几种特殊的三角形让学生亲自体验和观察结论的正确性.二、自主学习 探究新知我们要从理论上证明这个结论,也就是证明“三线共点”,但这是我们没有遇到过的不妨我们再来看一下演示过程,或许你能从中受到启示通过演示和启发,引导学生认同:“两直线必交于一点,那么要想证明“三线共点,只要证第三条直线过这个交点或者说这个点在第三条直线上即可” 虽然我们已找到证明“三线共点”的突破口,询问学生如何知道这个交点在第三边的垂直平分线上呢?师生共析,完成证明已知:在ABC中,设AB、B
4、C的垂直平分线交于点P,连接AP,BP,CP求证:P点在AC的垂直平分线上证明:点P在线段AB的垂直平分线上,PA=PB(线段垂直平分线上的点到线段两个端点的距离相等)同理PB=PCPA=PCP点在AC的垂直平分线上(到线段两个端点距离相等的点.在这条线段的垂直平分线上)AB、BC、AC的垂直平分线相交于点P进一步设问:“从证明三角形三边的垂直平分线交于一点,你还能得出什么结论?” (交点P到三角形三个顶点的距离相等)多媒体演示我们得出的结论:定理三角形三边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等三、巩固体验 深化提高1分别作出直角三角形、锐角三角形、钝角三角形三边的垂直平分线,
5、说明交点分别在什么位置(利用几何画板的现场作图,结合其运动的功能可以显示各种不同的三角形让学生先做,然后教师再演示)2已知:ABC中,AB=AC,AD是BC边一上的中线,AB的垂直平分线交AD于O求证:OA=OB=OC 解:1如图所示:可以发现,锐角三角形三边的垂直平分线交点在三角形内;直角三角形三边的垂直平分线交点在斜边上;钝角三角形三边的垂直平分线交点在三角形外2证明:AB=AC,AD是BC的中线,AD垂直平分BC(等腰三角形底边上的中线垂直于底边)又AB的垂直平分线与交于点O,OB=OC=OA(三角形三条边的垂直平分线交于一点,并且这一点到三个顶点的距离相等)四、实际运用 活动过程:(1
6、)已知三角形的一条边及这条边上的高,你能作出三角形吗?如果能,能作几个?所作出的三角形都全等吗?(2)已知等腰三角形的底边及底边上的高,你能用尺规作出等腰三角形吗?能作几个? 由学生思考可得:(1)已知三角形的一条边及这条边上的高,能作出三角形,并且能作出无数多个,如下图:已知:三角形的一条边a和这边上的高h求作:ABC,使BC=a,BC边上的高为h 从上图我们会发现,先作已知线段BC=a;然后再作BC边上的高h,但垂足不确定所以这样的三角形有无数多个观察还可以发现这些三角形不都全等 (2)如果底边和底边上的高都一定,这样的等腰三角形应该只有两个,并且它们是全等的,分别位于已知底边的两侧教师希
7、望学生能尝试着用尺规作出这个三角形.师生共析已知底边及底边上的高,求作等腰三角形已知:线段a、h求作:ABC,使AB=AC,BC=a,高AD=h作法:1作BC=a;2作线段Bc的垂直平分线MN交BC于D点;3以D为圆心,h长为半径作弧交MN于A点;4连接AB、ACABC就是所求作的三角形(如图所示)设计意图:让学生体验利用尺规作图作出的三角形是否惟一,即是否确定.五、课时小结 本节课通过折纸,推理证明了“到三角形三个顶点距离的点是三角形三条边的垂直平;分线的交点,及三角形三条边的垂直平分线;交于一点”的结论,并能根据此结论“已知等腰三角形的底和底边的高,求作等腰三角形”六、课后作业习题17第1、2题第3题选作七、教学反思本节利用我们已学过的定理和公理证明了线段垂直平分线的性质定理和判定定理,并能利用尺规作出已知线段的垂直平分线已知等腰三角形的底边和高作出符合条件的等腰三角形,从折纸,尺规作图,逻辑推理多层次地理解并证明了三角形三边的垂直平分线交于一点,并且这一点到三角形三个顶点的距离相等.尤其本节能够充分利用几何画板的动态演示功能,更能增强学生的理解力,我认为这样处理起来是比较好的.