资源描述
21.1二次根式(第1课时)
教学任务分析
教学目标
知识技能
1. 了解二次根式的概念.
2.了解二次根式的基本性质.
数学思考
经历观察、比较、总结二次根式的基本性质的过程,发展学生的归纳概括能力.
解决问题
通过对二次根式的概念和性质的探究,提高数学探究能力和归纳表达能力.
情感态度
学生经历观察、比较、总结和应用等数学活动,感受数学活动充满了探索性与创造性,体验发现的快乐,并提高应用的意识.
重点
二次根式的概念和基本性质.
难点
二次根式的基本性质的灵活运用.
教学流程安排
活动流程图
活动内容和目的
活动1 二次根式的概念
活动2 探究是一个非负数
活动3 探究
活动4 探究
活动5 小结,课后作业
由一组式子观察、归纳二次根式的概念.
通过计算、抽象、概括得出二次根式的基本性质.
回顾梳理,进一步认识理解二次根式的概念和基本性质.学生巩固、提高、发展.
教学过程设计
问题与情境
师生行为
活动1
问题
用带根号的式子填空,看看写出的结果有什么特点:(题目见教科书4页“思考”栏目)
(1)所填的结果有什么特点?
(2)平方根的性质是什么?
(3)如果把上面所填式子叫做二次根式,那么你能用数学符号表示二次根式吗?
例1 当是怎样的实数时,在实数范围内有意义?
例2 当是怎样的实数时,在实数范围内有意义?呢?
教师演示课件,给出题目.
学生根据所学知识回答问题.
教师提出问题(1),注意学生是否能深入地观察,并发现和总结这组式子的特点;
教师提出问题(2),检查学生对所学知识的掌握情况,并引导学生将所学知识与新知识相联系;
教师提出问题(3),不同层次的学生会有不同的回答,学生可能遇到的困难:是否能够想到用字母表示数;是否能总结出这一条件.教师帮助学生解决这些困难.
学生总结出二次根式的概念.
在本次活动中,教师应重点关注:
(1)学生是否掌握了二次根式有意义的条件;
(2)学生是否能将二次根式有意义的条件应用到问题的解决过程中,并注意到被开方数整体大于等于零决不能等同于被开方数的某一项或某一部分大于等于零.
活动2
问题
请比较与0的大小.
学生可能马上反映到,部分学生能得出这一正确结论.
因此,本次活动中教师应重点关注:
(1)学生是否联想到刚刚学习过的二次根式有意义的条件,本题中即要满足;
(2)学生是否能分和这两种情况进行讨论.
在教师的引导下,学生很容易得到如下结论:是一个非负数.
活动3
问题
根据算术平方根的意义填空:
;
;
;
.
一般地,你能得到什么结论?
例2 计算:
(1);
(2).
学生首先总结这组题目的特点.
本次活动中,教师应重点关注:
(1)学生是否观察出被开方数的特点;
(2)学生是否注意到先开平方,再平方这一运算顺序;
(3)学生是否发现计算结果与被开方数的关系.
学生在教师的引导下,得出一般性的结论:
学生自己总结过程中容易忽略括号中的内容,教师要加以补充并强调它的必要性.
对于例2的第(2)题,形式上与不一样,教师要关注学生是否联想到以前学习过的积的乘方运算,即,有了对这一知识的复习,学生就会知道本题需要先进行积的乘方运算,再运用新学的二次根式的性质,分这样两步来计算问题就迎刃而解了.
活动4 问题
(1)填空:
; ;
; .
(2)思考:当时, ?
(3)与相等吗?
例3 化简:
(1); (2).
教师首先引导学生比较活动3与活动4中两组题目的不同之处,注意学生是否观察出:活动3中的题目是对非负数先进行开平方运算,再进行平方运算;而活动4中的题目正好相反,是先进行平方运算,再进行开平方运算.
学生由这组题目能得到下面的结论:
通过问题(3),教师引导学生得出一般性的结论.
活动5 问题
本节课你学到了什么知识?你有什么认识?
课后作业:
教科书第8页第1、2、3、4题.
教师引导,学生小结.
本次活动中教师应重点关注:
(1)理清本节课的知识脉络,突出学习重点;
(2)引导学生谈一谈对与的认识;
(3)让学生认识到当时,;
展开阅读全文