收藏 分销(赏)

八年级数学下册 第一章 一元一次不等式和一元一次不等式组教案 北师大版.doc

上传人:s4****5z 文档编号:7616749 上传时间:2025-01-10 格式:DOC 页数:16 大小:56.50KB
下载 相关 举报
八年级数学下册 第一章 一元一次不等式和一元一次不等式组教案 北师大版.doc_第1页
第1页 / 共16页
八年级数学下册 第一章 一元一次不等式和一元一次不等式组教案 北师大版.doc_第2页
第2页 / 共16页
八年级数学下册 第一章 一元一次不等式和一元一次不等式组教案 北师大版.doc_第3页
第3页 / 共16页
八年级数学下册 第一章 一元一次不等式和一元一次不等式组教案 北师大版.doc_第4页
第4页 / 共16页
八年级数学下册 第一章 一元一次不等式和一元一次不等式组教案 北师大版.doc_第5页
第5页 / 共16页
点击查看更多>>
资源描述

1、第一章 一元一次不等式和一元一次不等式组1.1 不等关系知识与技能目标:1.理解不等式的意义.2.能根据条件列出不等式.过程与方法目标:通过列不等式,训练学生的分析判断能力和逻辑推理能力.情感态度与价值观目标:通过用不等式解决实际问题,使学生认识数学与人类生活的密切联系以及对人类历史发展的作用.并以此激发学生学习数学的信心和兴趣.教学重点用不等关系解决实际问题.教学难点正确理解题意列出不等式.教学方法讨论探索法.教具准备投影片两张第一张(记作1.1 A)第二张(记作1.1 B)教学过程.创设问题情境,引入新课师我们学过等式,知道利用等式可以解决许多问题.同时,我们也知道在现实生活中还存在许多不

2、等关系,利用不等关系同样可以解决实际问题.本节课我们就来了解不等关系,以及不等关系的应用.新课讲授师既然不等关系在现实生活中并不少见,大家肯定接触过不少,能举出例子吗?生可以.比如我的身高比她的身高高5公分.用天平称重量时,两个托盘不平衡等.师很好.那么,如何用式子表示不等关系呢?请看例题.投影片(1.1 A) 如图11,用两根长度均为l cm的绳子,分别围成一个正方形和圆.图11(1)如果要使正方形的面积不大于25 cm2, 那么绳长l应满足怎样的关系式?(2)如果要使圆的面积不小于100 cm2,那么绳长l应满足怎样的关系式?(3)当l=8时,正方形和圆的面积哪个大?l=12呢?(4)你能

3、得到什么猜想?改变l的取值,再试一试.师本题中大家首先要弄明白两个问题,一个是正方形和圆的面积计算公式,另一个是了解“不大于”“大于”等词的含意.生正方形的面积等于边长的平方.圆的面积是R2,其中R是圆的半径.两数比较有大于、等于、小于三种情况,“不大于”就是等于或小于.师下面请大家互相讨论,按照题中的要求进行解答.生(1)因为绳长l为正方形的周长,所以正方形的边长为,得面积为()2,要使正方形的面积不大于25 cm2,就是()225.即25.(2)因为圆的周长为l,所以圆的半径为R=.要使圆的面积不小于100 cm2,就是()2100即100(3)当l=8时,正方形的面积为=4(cm2).圆

4、的面积为5.1(cm2).45.1此时圆的面积大.当l=12时,正方形的面积为=9(cm2).圆的面积为11.5(cm2)此时还是圆的面积大.(4)我们可以猜想,用长度均为l cm的两根绳子分别围成一个正方形和圆,无论l取何值,圆的面积总大于正方形的面积,即.因为分子都是l 2相等、分母416,根据分数的大小比较,分子相同的分数,分母大的反而小,因此不论l取何值,都有.做一做投影片(1.1 B)通过测量一棵树的树围(树干的周长)可以计算出它的树龄.通常规定以树干离地面1.5 m的地方作为测量部位,某树栽种时的树围为5 cm,以后树围每年增加约为 3 cm.这棵树至少生长多少年其树围才能超过2.

5、4 m?(只列关系式).师请大家互相讨论后列出关系式.生设这棵树至少生长x年其树围才能超过2.4 m,得3x+5240议一议观察由上述问题得到的关系式,它们有什么共同特点?生由25100 3x+5240得,这些关系式都是用不等号连接的式子.由此可知:一般地,用符号“”(或“”),“”(或“”)连接的式子叫做不等式(inequality).例题.用不等式表示(1)a是正数;(2)a是负数;(3)a与6的和小于5;(4)x与2的差小于1;(5)x的4倍大于7;(6)y的一半小于3.生解:(1)a0;(2)a0;(3)a+65;(4)x21;(5)4x7;(6)y3.随堂练习2.解:(1)a0;(2

6、)ca且cb;(3)x+175x.补充练习当x=2时,不等式x+34成立吗?当x=1.5时,成立吗?当x=1呢?解:当x=2时,x+3=2+3=54成立,当x=1.5时,x+3=1.5+3=4.54成立;当x=1时,x+3=1+3=24,不成立.课时小结能根据题意列出不等式,特别要注意“不大于”,“不小于”等词语的理解.通过不等关系的式子归纳出不等式的概念.课后作业习题1.11.解:(1)3x+85x;(2)x20;(3)设海洋面积为S海洋,陆地面积为S陆地,则有S海洋S陆地.(4)设老师的年龄为x,你的年龄为y,则有x2y.(5)m铅球m篮球.2.解:满足条件的数组有:1,3;1,5;1,7

7、;3,5.3.解:所需甲种原料的质量为x千克,则所需乙种原料的质量为(10x)千克,得600x+100(10x)4200.4.解:8x+4(10x)72.活动与探究a,b两个实数在数轴上的对应点如图12所示:图12用“”或“”号填空:(1)a_b;(2)|a|_|b|;(3)a+b_0;(4)ab_0;(5)a+b_ab;(6)ab_a.解:由图可知:a0,b0,|a|b|.(1)ab;(2)|a|b|;(3)a+b0;(4)ab0;(5)a+bab;(6)aba.VI板书设计1.1 不等关系一、1.投影片1.1 A(讨论长度均为l cm的绳子,分别围成一个正方形和圆,比较它们的面积的大小).

8、2.做一做(投影片1.1 B)根据已知条件列不等式3.归纳不等式的定义4.例题二、课堂练习三、课时小结四、课后作业不等式的基本性质教案教学目的掌握不等式的基本性质,会用不等式的基本性质进行不等式的变形。教学过程师:我们已学过等式,不等式,现在我们来看两组式子(教师出示小黑板中的两组式子),请同学们观察,哪些是等式?哪些是不等式?第一组:1+2=3; a+b=b+a; S = ab; 4+x = 7. 第二组:-7 1+4; 2x 6, a+2 0; 34.生:第一组都是等式,第二组都是不等式。师:那么,什么叫做等式?什么叫做不等式?生:表示相等关系的式子叫做等式;表示不等式的式子叫做不等式。师

9、:在数学炽,我们用等号“=”来表示相等关系,用不等式号“”、“”或“”表示不等关系,其中“”和“”表示大小关系。表示大小关系的不等式是我们中学教学所要研究的。前面我们学过了等式,同学们还记得等式的性质吗?生:等式有这样的性质:等式两边都加上,或都减去,或都乘以,或都除以(除数不为零)同一个数,所得到的仍是等式。师:很好!当我们开始研究不等式的时候,自然会联想到,是否有与等式相类似的性质,也就是说,如果在不等式的两边都加上,或都减去,或都乘以,或都除经(除数不为零)同一个数,结果将会如何呢?让我们先做一些试验练习。练习1 (回答)用小于号“”填空。(1)7 _ 4; (2)- 2_6;(3)-

10、3_ -2; (4)- 4_-6练习2(口答)分别从练习1中四个不等式出发,进行下面的运算。(1)两边都加上(或都减去)5,结果怎样?不等号的方向改变了吗?(2)两边都乘以(或都除以)5,结果怎样?不等号的方向改变了吗?(3)两边都乘以(或都除以)(-5),结果怎样?不等号的方向改变了吗?生:我们发现:在练习2中,第(1)、(2)题的结果是不等号的方向不变;在第(3)题中,结果是不等号的方向改变了!师:同学们观察得很认真,大家再进一步探讨一下,在什么情况下不等号的方向就会发生改变呢?生甲:在原不等式的两边都乘以(或除以)一个负数的情况下,不等号的方向要改变。师:有没有不同的意见?大家都同意他的

11、看法吗?可能还有同学不放心,让我们再做一些试验。练习3(口答)分别在下面四个不等式的两边都以乘以(可除以)-2,看看不等号的方向是否改变: 74;-26;-3-2;-4-6。师:现在我们可以归纳出不等式的基本性质,一般地说,不等式的基本性质有三条:性质1:不等式的两边都加上(或都减去)同一个数,不等号的方向 。(让同学回答。)性质2:不等式的两边都乘以(或都除以)同一个正数,不等号的方向 。(让同学回答。)性质3:不等式的两边都乘以(或都除以)同一个负数,不等号的方向。(让同学回答。)现在请大家翻开课本,一起朗读用黑体字写的三条基本性质。不等式的这三条基本性质,都可以用数学语言表达出来,先请一

12、位同学说一说第一条基本性质。生:如果ab。那么a+cb+c(或a-cb-c;如果ab,那么a+cb+c(或a-cb-c)。师:对a和b有什么要求吗?对c有什么要求?生:没有什么要求。师:哪位同学来回答第二、三条性质?生甲:如果a0, 那么acb,且c0,那么acbc(或生乙:如果ab,且cbc(或 );如果ab,且c0,那么acb,且c0,那么acbd;(2)如果ab,那么ac2bc2;(3)如果ac2bc2,那么ab;(4)如果ab,那么a-b0;(5)如果axb,且a0,那么xa;生甲:(1)不对,当c=d0时,acbd不成立。生乙:(2)也不对,因为c2是一个非负数,当c=0时,ac2b

13、c2不成立。生丙:(3)对,因为ac2bc2成立,则c2一定大于零,根据不等式基本性质2,得ab出。(4)对,根据不等式基本性质,由ab,两边减去b得a-b0。(5)不对,当a0时,根据不等式基本性质3,得。(6)不对,因为当b0时,根据不等式基本性质1,得a+ba;而当b=0时,则有a+b=a。师:同学们回答得很好。今天我们学习了不等式的基本性质,我们不仅要理解这三条性质,还要能灵活运用。 课外做以下作业:略。教案说明(1) 不等式的基本性质的教学,是分成两个阶段进行的。在初中阶段,对不等式的基本性质,并不作证明,只引导学生用试验的方法,归纳出三条基本性质。通过试验,由特殊到一般,由具体到抽

14、象,这是一种认识事物规律的重要方法。科学上的许多发现,大多离不开试验和观察。大数学家欧拉说过:“数学这门科学,需要观察,也需要试验。”通过教学培养学生掌握由试验发现规律的方法,具有重要的意义。当然通过几个特殊的试验,就得出一般的结论,是不严密的。但对初中学生来说,初次接触不等式,是不能要求那么严密的。(2) 不等式的基本性质的教学,还应采用对比的方法。学生已学过等式和等式的性质,为了便于和加深对不等式基本性质的理解,在教学过程中,应将不等式的性质与等式的性质加以比较:强调等式的两边都加上或减去,都乘以或除以(除数不能为零)同一个数,所得到的仍是等式,这个数可以是正数、负数或零;而在不等式的两边

15、都加上或减去,都乘以或除以(除数不能为零)同一个数,当这个数是正数、负数或零时,对不等式的方向,有什么不同的影响。通过这样的对比,不但可以复习已学过的等式有关知识,便于引入新课,而且也有利于掌握不等式的基本性质。对比的方法,也是学习数学的一种重要方法。(3) 在应用不等式的基本性质对不等式进行变形时,学生对不等式两边是具体数,判定大小关系比较容易。因为这实际上是有理数大小的比较。对于不等式两边是含字母的代数式时,根据题给的条件,运用不等式基本性质判别大小关系或不等号方向,就比较困难。因为它比较抽象,特别是在运用不等式的基本性质2和性质3时,学生必须考虑不等式两边同乘(或同除)的这个用字母表示的数的符号是什么,或者还要对这个用字母表示的数,按正数、负数或零三种情况加以讨论。在教学过程中,对于这类题目,采用讨论法是比较好的。因为在讨论时,学生可以充分发表各种见解。对于正确的见解,教师可以让学生说出解题的依据;对于错误的见解,教师可以进行启发引导,发动学生自己找出错误的原因,自己修正见解。这样,有利于发现问题,有的放矢地解决问题,有利于深化对不等式基本性质的认识。

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 教育专区 > 初中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服