1、5.2二次函数的图像和性质(3)教学目标: 1使学生掌握用描点法画出函数yax2bxc的图象。2使学生掌握用图象或通过配方确定抛物线的开口方向、对称轴和顶点坐标。3让学生经历探索二次函数yax2bxc的图象的开口方向、对称轴和顶点坐标以及性质的过程,理解二次函数yax2bxc的性质。重点难点:重点:用描点法画出二次函数yax2bxc的图象和通过配方确定抛物线的对称轴、顶点坐标是教学的重点。难点:理解二次函数yax2bxc(a0)的性质以及它的对称轴(顶点坐标分别是x、(,)是教学的难点。教学过程:一、提出问题 1你能说出函数y4(x2)21图象的开口方向、对称轴和顶点坐标吗? 2函数y4(x2
2、)21图象与函数y4x2的图象有什么关系? 3函数y4(x2)21具有哪些性质? 4不画出图象,你能直接说出函数yx2x的图象的开口方向、对称轴和顶点坐标吗? 5你能画出函数yx2x的图象,并说明这个函数具有哪些性质吗?二、解决问题 由以上第4个问题的解决,我们已经知道函数yx2x的图象的开口方向、对称轴和顶点坐标。根据这些特点,可以采用描点法作图的方法作出函数yx2x的图象,进而观察得到这个函数的性质。 说明:列表时,应根据对称轴是x1,以1为中心,对称地选取自变量的值,求出相应的函数值。相应的函数值是相等的。 当x1时,函数值y随x的增大而增大;当x1时,函数值y随x的增大而减小;当x1时
3、,函数取得最大值,最大值y2三、做一做 1请你按照上面的方法,画出函数yx24x10的图象,由图象你能发现这个函数具有哪些性质吗? 2通过配方变形,说出函数y2x28x8的图象的开口方向、对称轴和顶点坐标,这个函数有最大值还是最小值?这个值是多少? 教师组织学生分组讨论,各组选派代表发言,全班交流,达成共识; yax2bxc a(x2x)cax2x()2()2c ax2x()2c a(x)2 当a0时,开口向上,当a0时,开口向下。 对称轴是xb/2a,顶点坐标是(,)四、课堂练习1填空:(1)抛物线yx22x2的顶点坐标是_;(2)抛物线y2x22x的开口_,对称轴是_;(3)抛物线y2x24x8的开口_,顶点坐标是_;(4)抛物线yx22x4的对称轴是_;(5)二次函数yax24xa的最大值是3,则a_2画出函数y2x23x的图象,说明这个函数具有哪些性质。3. 通过配方,写出下列抛物线的开口方向、对称轴和顶点坐标。(1)y3x22x;(2)yx22x(3)y2x28x8 (4)yx24x34求二次函数ymx22mx3(m0)的图象的对称轴,并说出该函数具有哪些性质五、课堂小结通过本节课的学习,你学到了什么知识?有何体会?六、课后作业: