收藏 分销(赏)

七年级数学下:9.3菱形教案鲁教版.doc

上传人:s4****5z 文档编号:7613482 上传时间:2025-01-10 格式:DOC 页数:7 大小:37KB 下载积分:10 金币
下载 相关 举报
七年级数学下:9.3菱形教案鲁教版.doc_第1页
第1页 / 共7页
七年级数学下:9.3菱形教案鲁教版.doc_第2页
第2页 / 共7页


点击查看更多>>
资源描述
9.3 菱形 教学目标 (一) 知识目标: 在观察和分析过程中探究菱形的基本特性(轴对称等)和常用的判别条件。 (二)能力训练目标: 1.经历探索菱形的性质和判别条件的过程,在操作活动和观察、分析过程中发展学生的主动探究习惯和初步的审美意识,进一步了解和体会说理的基本方法. 2.了解菱形的现实应用和常用判别条件. (三)情感与价值观目标: 1.在操作活动过程中,加深师生的情感.培养学生的观察能力,并提高学生的学习兴趣. 2.在学习过程中,来体会菱形的图形美和内在美. 教学重点 菱形的性质及判定方法. 教学难点 菱形性质和直角三角形的知识的综合应用. 教学过程 一、巧设情景问题,引入课题 [师]前面我们探讨了平行四边形的性质和判别条件,下面我们来共同回忆一下. (师生共同叙述) [师]很好,大家来看一个衣帽架(出示衣帽架,并按课本P68的图片进行变换),这个衣帽架中有你熟悉的图形吗? [生甲]有,平行四边形. [生乙]衣帽架中的平行四边形的邻边相等. [师]很好,我们把这样的平行四边形叫做菱形(rhombus).这节课我们就来探讨一下菱形. 二、讲授新课 [师]你能给菱形下定义吗? [生甲]邻边相等的平行四边形叫做菱形. [生乙]一组邻边相等的平行四边形叫做菱形. [师]对,菱形是一种特殊的平行四边形,特殊之处在于它是有一组邻边相等.所以菱形是具备:“①平行四边形,②一组邻边相等”.这两个条件的四边形. 下面大家画一个菱形,然后回答下列问题: 如图,在菱形ABCD中,AB=AD,对角线AC、BD相交于点O. (1)图中有哪些线段是相等的?哪些角是相等的? (2)图中有哪些等腰三角形、直角三角形? (3)两条对角线AC、BD有什么特定的位置关系? [生甲]因为菱形是一组邻边相等的平行四边形,平行四边形的对边相等,对角线互相平分,所以图中的:线段AB、BC、CD、DA分别相等,OA与OC,OB与OD分别相等. 因为菱形是平行四边形,所以两组对边分别平行,即:AB∥CD,AD∥BC.由“两直线平行,同旁内角互补”得:∠DAB+∠ADC=180°,∠DAB+∠ABC=180°,所以∠ADC=∠ABC,同理可得:∠DAB=∠BCD. 由“两直线平行,内错角相等”得: ∠DAC=∠ACB,∠ADB=∠DBC ∠BAC=∠ACD,∠ABD=∠BDC. 又因为∠ADC=∠ABC,∠DAB=∠BCD,所以得:∠DAC=∠BAC=∠DCA=∠BCA. ∠ABD=∠CBD=∠ADB=∠CDB. [生乙]在这个图中,有4个等腰三角形,即:△ADC、△ABC、△ABD、△BCD为等腰三角形,有4个直角三角形,即:△AOB、△BOC、△COD、△AOD为直角三角形. 理由是:因为四边形ABCD是菱形, 所以:AD=DC,四边形ABCD是平行四边形. 所以,AB=DC,AD=BC,OA=OC,OD=OB,又AD=DC,所以AB=DC=AD=BC,所以图中有四个等腰三角形. 又因为:AD=DC,OA=OC 所以,OD是AC的中垂线. 同理可知:AC是BD的中垂线. 因此可知:图中有四个直角三角形. [生丙]由乙同学的分析可以知道:AC与BD这两条对角线互相垂直. [师]同学们分析得很好,能否从中归纳出菱形的性质呢? [生]菱形的四条边相等,两条对角线互相垂直平分,每一条对角线平分一组对角. [师]同学们总结得很准确.因为菱形是特殊的平行四边形,所以它除具有平行四边形的所有性质外,还有平行四边形所没有的特殊性质. 菱形的四条边都相等. 菱形的两条对角线互相垂直平分,每一条对角线平分一组对角.[师]好,下面同学们想一想 菱形是轴对称图形吗?如果是,那么它有几条对称轴?对称轴之间有什么位置关系? [生]菱形是轴对称图形,它有两条对称轴,这两条对称轴是菱形的对角线,所以两条对称轴互相垂直. [师]同学们回答得很好,我们知道了菱形的性质,那想一想如何利用折纸、剪切的方法,既快又准确地剪出一个菱形的纸片?大家拿出准备好的白纸,小剪刀来动手做一做. (学生想——动手折、剪,教师指导,然后出示P92、P93的两种及学生总结的折纸、剪切的方法.) 方法一:将一张长方形的纸横对折,再竖对折(如P92的图),然后沿图中的虚线剪下,打开即是菱形纸片. 方法二:如图1,两张等宽的纸条交叉重叠在一起,重叠的部分ABCD就是菱形. 图1 图2 方法三:将一张长方形纸对折,再在折痕上取任意长为底边,剪一个等腰三角形,然后打开即是菱形. [师]你能说一说按这三种方法做的理由吗?大家讨论一下. [生甲]方法一主要是利用了菱形的轴对称性.按方法一剪出如图所示的图形.以BD所在的直线对折时,OA=OC,以AC所在的直线对折时,OB=OD,这时四边形ABCD是平行四边形,又因为两条折痕是互相垂直的,即:AC⊥BD,又OA=OC,所以BD是AC的中垂线.即AB=BC,因此平行四边形ABCD是菱形. [生乙]按方法二得到的四边形是菱形的理由是:这个四边形的两组对边分别在纸条的边缘上,它们彼此平行,它是平行四边形;分别以一组邻边为底写出这个平行四边形的面积(都是底乘高),再由纸条等宽即它们的高相等,立即得到这组邻边相等. [生丙]按方法三得到的菱形的理由是:如图2,△ABC是以BC为底的等腰三角形,所以AB=AC,以BC为折痕,对折后,得到的三角形BCD仍是等腰三角形,即:BD=DC,又因为AB=BD,DC=AC,所以AB=CD,BD=AC,所以四边形ABDC是平行四边形,又AB=AC,因此,平行四边形ABDC是菱形. [师]同学们的理由充足,条理清晰,说明大家基本掌握了说理的方法.刚才通过折纸、剪切,得到了菱形,你能因此归纳一下菱形的判别方法吗?分组讨论: [生]菱形的定义既是性质又是判别,所以可用“一组邻边相等的平行四边形是菱形”来判别. 由刚才折纸方法一能得到菱形的一个判别方法.即:对角线互相平分且垂直的四边形是菱形.也可说:对角线互相垂直的平行四边形是菱形. 由方法三能得到菱形的另一个判别方法,即:四条边都相等的四边形是菱形. [师]同学们经讨论得到了菱形的判别方法 菱形的判别方法: 一组邻边相等的平行四边形是菱形; 对角线互相垂直的平行四边形是菱形; 四条边都相等的四边形是菱形. 要注意的是:菱形的判别方法的题设条件是平行四边形还是任意四边形. 好,下面大家想一想 木工在做菱形的窗格时,总是保证四条边框一样长,你能说出其中的道理吗? [生]因为四条边都相等的四边形是菱形.所以木工在做菱形的窗格时,总是保证四条边框一样长. [师]很好,接下来我们通过例题来熟悉和应用菱形的判别条件 [例1]如下图,ABCD的两条对角线AC、BD相交于O点,AB=,AO=2,OB=1. (1)AC、BD有怎样的位置关系? (2)四边形ABCD是菱形吗?为什么? [师生共析]从图中知道:AC与BD是相交,从已知条件:AB=,OA=2,OB=1.结合图形知道:这三条线段正好构成三角形.又由于AB2=OA2+OB2,所以可以知道:△AOB是直角三角形,因此可以得出:AC与BD互相垂直. 由于四边形ABCD是平行四边形,它的对角线互相垂直,所以由此可知:平行四边形ABCD是菱形. [师]很好,下面大家看课本P91~P93,然后小结. 三、课时小结 本节课我们探讨了菱形的定义、性质和判别方法,我们来共同总结一下: 菱形的定义:一组邻边相等的平行四边形是菱形. 菱形的性质:边:四条边都相等 对边分别平行 角:对角线相等 对角线:互相垂直、平分,每一条对角线平分一组对角. 注意:菱形的一条对角线把菱形分成两个全等的等腰三角形;菱形的两条对角线把菱形分成四个全等的直角三角形.因此,有关菱形的问题,往往可化为等腰三角形或直角三角形的问题,要学会这种“转化”的思想方法. 四、课后作业 (一)课本习题9.3 1、2
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传

当前位置:首页 > 教育专区 > 其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2026 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服