1、5.1 同底数幂的乘法(2)相关以往知识:_教学内容和方法:_个性化教学思路及改进建议:_【教学目标】1、经历探索幂的乘方的法则,进一步体会幂的意义,发展推理能力和有条理的表达能力,培养从特殊到一般,从具体到抽象的逐步概括抽象的认识能力。2、了解幂的乘方的运算法则,并能利用法则进行计算和解决一些实际问题。【教学重点】1. 法则的探索过程和法则的灵活应用【教学难点】1. 幂的乘方与同底数幂相乘的混合运算【教学过程】(一)、回顾与思考1、学习(1)幂的意义aaa=ann个a相乘(2)同底数幂的相乘法则aman=am+n(m,n都是正整数)(二)、创设情景,导入课题1、先让学生直观体会两个球体的体积
2、的大小的悬殊比例,然后让他们猜想足球的体积大约是乒乓球体积的多少倍?同学讨论、交流。最后,告诉他们足球的半径是乒乓球半径的几倍,让他们算足球的体积是乒乓球体积的多少倍?而导入新课。2、,从计算的结果我们看出:球体的体积与半径的大小有着紧密的联系,如果甲球的半径是乙球的n倍,那么甲球的体积是乙球的体积n3倍。地球、木星、太阳可以近似地看成球体,木星、太阳的半径分别约为地球的10倍和102倍,它们的体积约是地球的多少倍?学生独立思考后回答:木星的体积是地球的体积的103倍,而太阳的体积则是地球的体积的(102)3。你知道(102)3到底是多少倍吗?猜想一下,并说明你的理由。半径扩大的倍数与体积扩大
3、的倍数哪个变化更大?这节课我们共同研究“幂的乘方”。(三)、合作学习,建立模型1、做一做计算下列各式,并说明理由(1)(102)3 (2)(34)2(3)(a3)5 (4)(am)n由学生合作完成,探索幂的乘方的法则的归纳过程,经小组讨论,交流各自的想法,看看别人是怎么运算出结果的,和自己的想法有何区别,最后指名让小组代表说自己的想法和运算过程及运算结果。_师生共同归纳为:(1)(102)3102102102(根据幂的意义)10222(根据同底幂相乘法则)1023 (2)(34)23434344342=38(3)(a3)5a3a3a3a3a3a33333a35a15n个(4)(am)namam
4、amam(幂的意义) n个 a mmm(同底数幂相乘的法则) amn(乘法的意义)2、总结法则(am)namn(m,n都是正整数)幂的乘方,底数不变,指数相乘。3、想一想(小组讨论)(am)n与(an)m相等吗?为什么?(四)、应用新知,体验成功1、 例3:计算下列各式,采用幂的形式表示(1)(107)3 (2)(a4)8 (3)(-x)63(4)-(x2)m (5)(x3)4(x2)5 (6)2(a2)6-(a3)4解:(1)(107)310731021(2)(a4)8a48a32(3)(-x)63(-x)63(-x)18x18(4)-(x2)m-x2m (5)(x3)4(x2)5x34x25x12x10x1210x22(6)2(a2)6-(a3)42a26-a342a12-a12a12想一想:下面的计算对吗?错的请改正:做一做:计算下列各式,结果用幂的形式表示:_瞬间灵感或困惑:_抢答题(详见课件)(五)、探索挑战,激发情智1、探究活动教材P116探究活动,探究魔方2、智能挑战(1) 、(2) (六)、归纳小结,充实结构1、今天收获1,2,3幂的乘方运算法则(am)namn(m,n都是正整数)底数不变,指数相乘2、结构幂的同底数幂相乘法则:amanamn(m,n都是正整数)底数不变,指数相加意义布置作业:课本后附作业题板书设计