收藏 分销(赏)

九年级数学上册 第二章 二次函数 2.4 二次函数的应用 名师教案2 浙教版.doc

上传人:s4****5z 文档编号:7612914 上传时间:2025-01-10 格式:DOC 页数:3 大小:26KB 下载积分:10 金币
下载 相关 举报
九年级数学上册 第二章 二次函数 2.4 二次函数的应用 名师教案2 浙教版.doc_第1页
第1页 / 共3页
九年级数学上册 第二章 二次函数 2.4 二次函数的应用 名师教案2 浙教版.doc_第2页
第2页 / 共3页


点击查看更多>>
资源描述
2.4二次函数的应用(1) 教学目标加粗,下面的小标题同样需要修改 : 1、经历数学建模的基本过程。 2、会运用二次函数求实际问题中的最大值或最小值。 3、体会二次函数是一类最优化问题的重要数学模型,感受数学的应用价值。 教学重点和难点: 重点:二次函数在最优化问题中的应用。 难点:例1是从现实问题中建立二次函数模型,学生较难理解。 教学方法:启发 教学辅助:投影片 教学过程: 一、创设情境、提出问题 出示引例 (将作业题第3题作为引例) 给你长8m的铝合金条,设问: ①你能用它制成一矩形窗框吗? ②怎样设计,窗框的透光面积最大? ③如何验证? 二、观察分析,研究问题 演示动画,引导学生观察、思考、发现:当矩形的一边变化时,另一边和面积也随之改变。深入探究如设矩形的一边长为x米,则另一边长为(4-x)米,再设面积为ym2,则它们的函数关系式为 并当x =2时(属于范围)即当设计为正方形时,面积最大=4(m2) 引导学生总结,确定问题的解决方法:在一些涉及到变量的最大值或最小值的应用问题中,可以考虑利用二次函数最值方面的性质去解决。 步骤: 第一步设自变量; 第二步建立函数的解析式; 第三步确定自变量的取值范围; 第四步根据顶点坐标公式或配方法求出最大值或最小值(在自变量的取值范围内)。 三、例练应用,解决问题 在上面的矩形中加上一条与宽平行的线段,出示图形 设问:用长为8m的铝合金条制成如图形状的矩形窗框, 问窗框的宽和高各是多少米时,窗户的透光面积最大?最大面积是多少? 引导学生分析,板书解题过程。 变式(即课本例1):现在用长为8米的铝合金条制成如图所示的窗框(把矩形的窗框改为上部分是由4个全等扇形组成的半圆,下部分是矩形),那么如何设计使窗框的透光面 积最大?(结果精确到0.01米) 练习:课本作业题第4题 四、知识整理,形成系统 这节课学习了用什么知识解决哪类问题? 解决问题的一般步骤是什么?应注意哪些问题? 学到了哪些思考问题的方法? 五、布置作业:作业本 板书设计: 例1 解: 练习 教学反思: 本节课学生对对函数值的最值求法掌握很好。学生对表达格式表述不规范,有待于今后教学多强调。
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传
相似文档                                   自信AI助手自信AI助手

当前位置:首页 > 教育专区 > 初中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2026 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服