1、181 勾股定理(二)一、教学目标1会用勾股定理进行简单的计算。2树立数形结合的思想、分类讨论思想。二、重点、难点1重点:勾股定理的简单计算。2难点:勾股定理的灵活运用。三、例题的意图分析例1(补充)使学生熟悉定理的使用,刚开始使用定理,让学生画好图形,并标好图形,理清边之间的关系。让学生明确在直角三角形中,已知任意两边都可以求出第三边。并学会利用不同的条件转化为已知两边求第三边。例2(补充)让学生注意所给条件的不确定性,知道考虑问题要全面,体会分类讨论思想。例3(补充)勾股定理的使用范围是在直角三角形中,因此注意要创造直角三角形,作高是常用的创造直角三角形的辅助线做法。让学生把前面学过的知识
2、和新知识综合运用,提高综合能力。四、课堂引入复习勾股定理的文字叙述;勾股定理的符号语言及变形。学习勾股定理重在应用。五、例习题分析例1(补充)在RtABC,C=90已知a=b=5,求c。已知a=1,c=2, 求b。已知c=17,b=8, 求a。已知a:b=1:2,c=5, 求a。已知b=15,A=30,求a,c。分析:刚开始使用定理,让学生画好图形,并标好图形,理清边之间的关系。已知两直角边,求斜边直接用勾股定理。已知斜边和一直角边,求另一直角边,用勾股定理的便形式。已知一边和两边比,求未知边。通过前三题让学生明确在直角三角形中,已知任意两边都可以求出第三边。后两题让学生明确已知一边和两边关系
3、,也可以求出未知边,学会见比设参的数学方法,体会由角转化为边的关系的转化思想。例2(补充)已知直角三角形的两边长分别为5和12,求第三边。分析:已知两边中较大边12可能是直角边,也可能是斜边,因此应分两种情况分别进形计算。让学生知道考虑问题要全面,体会分类讨论思想。例3(补充)已知:如图,等边ABC的边长是6cm。求等边ABC的高。 求SABC。分析:勾股定理的使用范围是在直角三角形中,因此注意要创造直角三角形,作高是常用的创造直角三角形的辅助线做法。欲求高CD,可将其置身于RtADC或RtBDC中,但只有一边已知,根据等腰三角形三线合一性质,可求AD=CD=AB=3cm,则此题可解。六、课堂
4、练习1填空题在RtABC,C=90,a=8,b=15,则c= 。在RtABC,B=90,a=3,b=4,则c= 。在RtABC,C=90,c=10,a:b=3:4,则a= ,b= 。一个直角三角形的三边为三个连续偶数,则它的三边长分别为 。已知直角三角形的两边长分别为3cm和5cm,则第三边长为 。已知等边三角形的边长为2cm,则它的高为 ,面积为 。2已知:如图,在ABC中,C=60,AB=,AC=4,AD是BC边上的高,求BC的长。 3已知等腰三角形腰长是10,底边长是16,求这个等腰三角形的面积。七、当堂检测1填空题在RtABC,C=90,如果a=7,c=25,则b= 。如果A=30,a=4,则b= 。如果A=45,a=3,则c= 。如果c=10,a-b=2,则b= 。如果a、b、c是连续整数,则a+b+c= 。如果b=8,a:c=3:5,则c= 。2已知:如图,四边形ABCD中,ADBC,ADDC, ABAC,B=60,CD=1cm,求BC的长。课后小结教后反思: