资源描述
25.2 用列举法求概率(第一课时)
教学时间
课题
课型
新授课
教
学
目
标
知 识
和
能 力
1.理解P(A)=(在一次试验中有n种可能的结果,其中A包含m种)的意义.
2.应用P(A)=解决一些实际问题.
过 程
和
方 法
复习概率的意义,为解决利用一般方法求概率的繁琐,探究用特殊方法—列举法
求概率的简便方法,然后应用这种方法解决一些实际问题.
情 感
态 度
价值观
在合作探究学习过程中,激发学生学习的好奇心与求知欲.
教学重点
一般地,如果在一次试验中,有几种可能的结果,并且它们发生的可能性都
相等,事件A包含其中的。种结果,那么事件A发生的概率为P(A)= ,以及运用它
解决实际间题.
教学难点
通过实验理解P(A)= 并应用它解决一些具体题目
教学准备
教师
多媒体课件
学生
“五个一”
课 堂 教 学 程 序 设 计
设计意图
一、复习引入
(老师口问.学生口答)请同学们回答下列问题.
1. 概率是什么?
2. P(A)的取值范围是什么?
3. 在大量重复试验中,什么值会稳定在一个常数上?俄们又把这个常数叫做什么?
4. A=必然事件,B是不可能发生的事件,C是随机事件.诸你画出数轴把这三个量表示出来.
老师点评:1,(口述)一般地,在大量重复试验中,如果事件A发生的频率会稳定在某一个常数P附近,那么这个常数P就叫做事件A的概率,记为P(A)=P.
2.(板书)0≤P≤1.
3.(口述)频率、概率.
二、探索新知
不管求什么事件的概率,我们都可以做大量的试脸.求频率得概率,这是上一节课也是刚才复习的内容,它具有普遍性,但求起来确实很麻烦,是否有比较简单的方法,这
种方法就是我们今天要介绍的方法—列举法,
把学生分为10组,按要求做试验并回答问题.
1.从分别标有1,2,3 ,4,5号的5根纸签中随机地抽取一根.抽出的号码有多少种?其抽到1的概率为多少?
2.掷一个骰子,向上的一面的点数有多少种可能?向上一面的点数是1的概率是多少?
老师点评:1.可能结果有1,2,3,4,5等5种杯由于纸签的形状、大小相同,又是随机
抽取的,所以我们可以认为:每个号被抽到的可能性相等,都是1/5.其概率是1/5。
2.有1,2,3,4,5,6等6种可能.由于股子的构造相同质地均匀,又是随机掷出的,
所以我们可以断言:每个结果的可能性相等,都是1/6,所以所求概率是1/6所求。
对于具有上述特点的试验,我们可以从事件所包含的各种可能的结果在全部可能
的试验结果中所占的比分析出事件的概率.
因此,一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相
等,事件A包含其中的、种结果,那么李件A发生的概率为P(A)=
例1.小李手里有红桃1,2,3,4,5,6,从中任抽取一张牌,观察其牌上的数字.求下
列事件的概率.
(1)牌上的数字为3;
(2)牌上的数字为奇数;
(3)牌上的数字为大于3且小于6.
分析:因为从6张牌子任抽取一张符合刚才总结的试验的两个特点,所以可用P(A)= 来求解.
解:任抽取一张牌子,其出现数字可能为1,2,3,4,5,6,共6种,这些数字出现的可
能性相同.
(1)P(点数为3)=1/6;
(2)P(点数为奇数)=3/6=1/2;
(3)牌上的数字为大于3且小于6的有4,5两种.
所以 P(点数大于3且小于6)=1/3
例2:如图25-7所示,有一个转盘,转盘分成4个相同的扇形,颇色分为红、绿、黄三种颇色,指针的位置固定,转动转盘后任其自由停止.其中的某个扇形会恰好停在指
红
红
黄
绿
针所指的位里(指针指向两个扇形的交线时,当作指向右边的扇形),求下列事件的概率
(1)指针指向绿色;
(2)指针指向红色或黄色
(3)指针不指向红色.
分析:转一次转盘,它的可能结果有4种—有限个,并且各种结果发生的可能性相等.因此,它可以应用“ P(A)= ”问题,即“列举法”求概率.
例3如图25-8所示是计算机中“扫雷“游戏的画面,在个小方格的正方形雷区中,随机埋藏着颗地雷,每个小方格内最多只能藏颗地雷。
小王在游戏开始时随机地踩中一个方格,踩中后出现了如图所示的情况,我们把与标号的方格相邻的方格记为区域(画线部分),区域外的部分记为区域,数字表示在区域中有颗地雷,那么第二步应该踩区域还是区域?
分析:第二步应该踩在遇到地雷小的概率,所以现在关键求出在区域、区域的概率并比较。
解:(1)区域的方格共有个,标号表示在这个方格中有个方格各藏颗地雷,因此,踩区域的任一方格,遇到地雷的概率是。
(2)区域中共有个小方格,其中有个方格内各藏颗地雷。因此,踩区域的任一方格,遇到地雷的概率是。
由于,所以踩区域遇到地雷的可能性大于踩区域遇到地雷的可能性,因而第二步应踩区域。
三、巩固练习
教材P134 练习,
五、归纳小结
本节课应用列举法求概率。
作业
设计
必做
教材P137:1、2
选做
拓广探索
教
学
反
思
展开阅读全文