1、2.2 整式的加减第2课时去括号教学目标:1.能运用运算律探究去括号法则,并且利用去括号法则将整式化简.2.经历带有括号的有理数的运算,发现去括号时符号变化的规律,归纳出去括号法则,培养学生观察、分析、归纳能力.教学重点:准确应用去括号法则将整式化简.教学难点:括号前面是“-”号,去括号时,括号内各项要变号,容易产生错误.教学过程:一、讲授新课利用合并同类项可以把一个多项式化简,在实际问题中,往往列出的式子含有括号,那么该怎样化简呢?现在我们来看本章引言中的问题(3):在格尔木到拉萨路段,列车通过冻土地段要t小时,那么它通过非冻土地段的时间为(t-0.5)小时,于是,冻土地段的路程为100t千
2、米,非冻土地段的路程为120(t-0.5)千米,因此,这段铁路全长为100t+120(t-0.5)千米冻土地段与非冻土地段相差100t-120(t-0.5)千米上面的式子、都带有括号,它们应如何化简?思路点拨:教师引导、启发学生类比数的运算,利用分配律化简.学生练习、交流后,教师归纳:利用分配律,可以去括号,合并同类项,得:100t+120(t-0.5)=100t+120t+120(-0.5)=220t-60100t-120(t-0.5)=100t-120t-120(-0.5)=-20t+60我们知道,化简带有括号的整式,首先应先去括号.上面两式去括号部分变形分别为:+120(t-0.5)=+
3、120t-60-120(t-0.5)=-120t+60比较、两式,你能发现去括号时符号变化的规律吗? 思路点拨:鼓励学生通过观察,试用自己的语言叙述去括号法则,然后教师板书(或用屏幕展示):如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.特别地,+(x-3)与-(x-3)可以分别看作1与-1分别乘(x-3).利用分配律,可以将式子中的括号去掉,得:+(x-3)=x-3 (括号没了,括号内的每一项都没有变号)-(x-3)=-x+3(括号没了,括号内的每一项都改变了符号)二、范例学习【例1】化简下列各式:(1)
4、8a+2b+(5a-b);(2)(5a-3b)-3(a2-2b).思路点拨:讲解时,先让学生判定是哪种类型的去括号,去括号后要不要变号,括号内的每一项原来是什么符号?去括号时,要同时去掉括号前的符号.为了防止错误,题(2)中-3(a2-2b),先把3乘到括号内,然后再去括号.【例2】两船从同一港口同时出发反向而行,甲船顺水,乙船逆水,两船在静水中的速度都是50 km/h,水流速度是a km/h.(1)2 h后两船相距多远?(2)2 h后甲船比乙船多航行多少千米?教师操作投影仪,展示例2,学生思考,小组交流,寻求解答思路.思路点拨:根据船顺水航行的速度=船在静水中的速度+水流速度,船逆水航行的速
5、度=船在静水中的速度-水流速度,因此,甲船速度为(50+a)千米/时,乙船速度为(50-a)千米/时,2小时后,甲船行程为2(50+a)千米,乙船行程为2(50-a)千米.两船从同一港口同时出发反向而行,所以两船相距等于甲、乙两船行程之和.解答过程按照课本进行.三、巩固练习1.课本P67页练习第1、2题.2.计算:5xy2-3xy2-(4xy2-2x2y)+2x2y-xy2. 思路点拨:一般地,先去小括号,再去中括号.四、课时小结去括号是代数式变形中的一种常用方法.去括号时,特别是括号前面是“-”号时,括号连同括号前面的“-”号去掉,括号里的各项都改变符号.去括号规律可以简单记为“-”变“+”不变,要变全都变.当括号前带有数字因数时,这个数字要乘以括号内的每一项,切勿漏乘某些项.学生作总结后,教师强调要求大家应熟记法则,并能根据法则进行去括号运算.法则顺口溜:去括号,看符号;是“+”号,不变号;是“-”号,全变号.五、课堂作业 课本P69习题2.2第2、3、5、8题.