1、 7 相关性一学习目标:(1)通过具体示例引导学生考察变量之间的关系,在讨论的过程中认识现实世界中存在着不能用函数模型描述的变量关系,从而体会研究变量之间的相关关系的重要性.(2) 通过收集现实问题中两个有关联变量的数据作出散点图,并利用散点图直观认识变量间的相关关系.会作散点图,并对变量间的正相关或负相关关系作出直观判断.(3) 在解决统计问题的过程中,进一步体会用样本估计总体的思想,理解统计的作用.二教学重点与难点:教学重点:利用散点图直观认识变量间的相关关系.教学难点:理解变量间的相关关系.三学习过程 客观事物是相互联系的,过去研究的大多数是因果关系,但实际上更多存在的是一种非因果关系.
2、比如说:某某同学的数学成绩与物理成绩,彼此是互相联系的,但不能认为数学是“因”,物理是“果”,或者反过来说,事实上数学和物理成绩都是“果”,而真正的“因”是学生的理科学习能力和努力程度,所以说,函数关系存在着一种确定性关系,但还存在着另一种非确定性关系相关关系.生活中存在着许多相关关系的问题:问题1:商品销售收入与广告支出之间的关系.问题2:粮食产量和施肥量之间的关系.问题3:人体内的脂肪含量与年龄之间的关系. 由上述问题我们知道,两个变量之间的关系,可能是 或 .当自变量取值一定时,因变量的取值带有一定的 ,两个变量之间的关系称为 .相关关系是一种 性关系,函数关系是一种 的关系.2.两个变
3、量的线性相关问题4: 在一次对人体的脂肪含量和年龄关系的研究中,研究人员获得了一组样本数据:年龄2327394145495053545657586061脂肪9.517.821.225.927.526.328.229.630.231.430.833.535.234.5根据上述数据,人体的脂肪含量和年龄之间有怎样的关系?从散点图可以看出. 各散点在从左下角到右上角的区域,表明年龄越大, 体内脂肪含量越高, 图中点的趋势表明两个变量之间存在一定的关系.这种关系称为 .问题5:某小卖部为了了解热茶销售量与气温之间的关系,随机统计并制作了某6天卖出热茶的杯数与当天气温的对照表:气温/C261813104
4、杯数202434385064根据上述数据,气温与热茶销售量之间的有怎样的关系?从散点图可以看出,各散点在从左上角到右下角的区域里,因此,随着气温的升高, 热茶销售量逐步减少,图中点的趋势表明两个变量之间存在一定的关系.这种相关关系称为 相关.3. 两个变量的线性相关性的判断例题1:下表为某地近几年机动车辆数与交通事故数的统计资料,请判断机动车辆数与交通事故数之间是否有线性相关关系,说明理由机动车辆数千台95110112120129135150180交通事故数千件6.27.57.78.58.79.810.2134练习:(1)下列两个变量之间的关系哪个不是函数关系()A角度和它的余弦值B.正方形边长和面积C正边形的边数和它的内角和 D.人的年龄和身高(2)给出施化肥量对水稻产量影响的试验数据:施化肥量x15202530354045水稻产量y330345365405445450455请判断施化肥量对水稻产量是学生小结对于本堂课你的评价?自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差本节课都学习了什么?本次学习你掌握了多少?