1、反比例函数的图象与性质教学目标【知识与技能】1.综合运用一次函数和反比例函数的知识解决有关问题;2.借助一次函数和反比例函数的图象解决某些简单的实际问题【过程与方法】经历观察、分析、交流的过程,逐步提高运用知识的能力.【情感态度】能灵活运用函数图象和性质解决一些较综合的问题,培养学生看图(象)、识图(象)能力、体会用“数、形”结合思想解答函数题.【教学重点】理解并掌握一次函数,反比例函数的图象和性质,并能利用它们解决一些综合问题.【教学难点】学会从图象上分析、解决问题,理解反比例函数的性质.教学过程一、情景导入,初步认知1.正比例函数有哪些性质?2.一次函数有哪些性质?3.反比例函数有哪些性质
2、?【教学说明】对所学的三种函数的性质教学复习,让学生对它们的性质有系统的了解.二、思考探究,获取新知1.已知一个正比例函数与一个反比例函数的图象交于P(-3,4),试求出它们的表达式,并在同一坐标系内画出这两个函数的图象.解:设正比例函数,反比例函数的表达式分别为y=k1x,y= ,其中,k1,k2是常数,且均不为0.由于这两个函数的图象交于P(-3,4),则P(-3,4)是这两个函数图象上的点,即点P的坐标分别满足这两个表达式.因此,4=k1(-3),4=解得,k1= k2=-12所以,正比例函数解析式为y=x,反比例函数解析式为y=-.函数图象如下图.【教学说明】通过图象,让学生掌握一次函
3、数与反比例函数的综合应用.2.在反比例函数y=的图象上取两点(1,6),(6,1),过点分别作x轴、y轴的平行线,与坐标轴围成的矩形面积为S1= ;过点分别作x轴、y轴的平行线,与坐标轴围成的矩形面积为S2= ;S1与S2有什么关系?为什么?【归纳结论】反比例函数y=(k0)中比例系数k的几何意义:过双曲线y=(k0)上任意一点引x轴、y轴的平行线,与坐标轴围成的矩形面积为k的绝对值.【教学说明】引导学生根据一定的分类标准研究反比例函数的性质,同时鼓励学生用自己的语言进行表述,从而提高学生的表达能力与数学语言的组织能力三、运用新知,深化理解1.已知如图,A是反比例函数y=kx的图象上的一点,A
4、B丄x轴于点B,且ABO的面积是3,则k的值是( )A.3 B.-3 C.6 D.-6分析:过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S是个定值,即S|k| 解:根据题意可知:SAOB|k|3,又反比例函数的图象位于第一象限,k0,则k6【答案】 C2.反比例函数y=与y=在第一象限的图象如图所示,作一条平行于x轴的直线分别交双曲线于A、B两点,连接OA、OB,则AOB的面积为( )A. B.2 C.3 D.1分析:分别过A、B作x轴的垂线,垂足分别为D、E,过B作BCy轴,点C为垂足,再根据反比例函数系数k的几何意义分别求出四边形OEAC、AOE、BOC
5、的面积,进而可得出结论解:分别过A、B作x轴的垂线,垂足分别为D、E,过B作BCy轴,点C为垂足,由反比例函数系数k的几何意义可知,S四边形OEAC=6,SAOE=3,SBOC=1,SAOB=S四边形OEAC-SAOE-SBOC=6-3-1=2【答案】 B3.已知直线yxb经过点A(3,0),并与双曲线y=的交点为B(2,m)和C,求k、b的值解:点A(3,0)在直线yxb上,所以03b,b3一次函数的解析式为:yx3又因为点B(2,m)也在直线yx3上,所以m235,即B(2,5)而点B(2,5)又在反比例函数y=上,所以k2(5)104.已知反比例函数y=的图象与一次函数yk2x1的图象交
6、于A(2,1)(1)分别求出这两个函数的解析式;(2)试判断A点关于坐标原点的对称点与两个函数图象的关系分析:(1)因为点A在反比例函数和一次函数的图象上,把A点的坐标代入这两个解析式即可求出k1、k2的值(2)把点A关于坐标原点的对称点A坐标代入一次函数和反比例函数解析式中,可知A是否在这两个函数图象上解:(1)因为点A(2,1)在反比例函数和一次函数的图象上,所以k121212k21,k21所以反比例函数的解析式为:y=;一次函数解析式为:yx1(2)点A(2,1)关于坐标原点的对称点是A(2,1)把A点的横坐标代入反比例函数解析式得,y=1,所以点A在反比例函数图象上把A点的横坐标代入一
7、次函数解析式得,y213,所以点A不在一次函数图象上5.已知一次函数ykxb的图象经过点A(0,1)和点B(a,3a),a0,且点B在反比例函数的y=的图象上(1)求a的值(2)求一次函数的解析式,并画出它的图象(3)利用画出的图象,求当这个一次函数y的值在1y3范围内时,相应的x的取值范围(4)如果P(m,y1)、Q(m1,y2)是这个一次函数图象上的两点,试比较y1与y2的大小分析:(1)由于点A、点B在一次函数图象上,点B在反比例函数图象上,把这些点的坐标代入相应的函数解析式中,可求出k、b和a的值(2)由 (1)求出的k、b、a的值,求出函数的解析式,通过列表、描点、连线画出函数图象(
8、3)和 (4)都是利用函数的图象进行解题一次函数和反比例函数的图象为:(3)从图象上可知,当一次函数y的值在1y3范围内时,相应的x的值为:1x1(4)从图象可知,y随x的增大而减小,又m1m,所以y1y2.或解:当x1m时,y12m1;当x2m1时,y22(m1)12m1所以y1y2(2m1)(2m1)20,即y1y2.6.如图,一次函数ykxb的图象与反比例函数y=的图象交于A、B两点(1)利用图象中的条件,求反比例函数和一次函数的解析式;(2)根据图象写出使一次函数的值大于反比例函数值的x的取值范围分析:(1)把A、B两点坐标代入两解析式,即可求得一次函数和反比例函数解析式(2)因为图象
9、上每一点的纵坐标与函数值是相对应的,一次函数值大于反比例函数值,反映在图象上,自变量取相同的值时,一次函数图象上点的纵坐标大于反比例函数图象上点的纵坐标 【教学说明】检测题采取多种形式呈现,增加了灵活性,以基础题为主,也有少量综合问题,可使不同层次水平的学生均有机会获得成功的体验四、师生互动、课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.课后作业布置作业:教材“习题1.2”中第6题.通过本节课的学习,发现了一些问题,因此必须强调:教学反思1综合运用一次函数和反比例函数求解两种函数解析式,往往用待定系数法2观察图象,把图象中提供、展现的信息转化为与两函数有关的知识来解题