1、21.3 二次根式的加减(1)第一课时 教学内容 二次根式的加减 教学目标 理解和掌握二次根式加减的方法 先提出问题,分析问题,在分析问题中,渗透对二次根式进行加减的方法的理解再总结经验,用它来指导根式的计算和化简 重难点关键 1重点:二次根式化简为最简根式 2难点关键:会判定是否是最简二次根式 教学过程 一、复习引入 学生活动:计算下列各式 (1)2x+3x; (2)2x2-3x2+5x2; (3)x+2x+3y; (4)3a2-2a2+a3 教师点评:上面题目的结果,实际上是我们以前所学的同类项合并同类项合并就是字母不变,系数相加减 二、探索新知 学生活动:计算下列各式(1)2+3 (2)
2、2-3+5 (3)+2+3 (4)3-2+ 老师点评: (1)如果我们把当成x,不就转化为上面的问题吗? 2+3=(2+3)=5 (2)把当成y; 2-3+5=(2-3+5)=4=8 (3)把当成z; +2+ =2+2+3=(1+2+3)=6 (4)看为x,看为y 3-2+ =(3-2)+ =+ 因此,二次根式的被开方数相同是可以合并的,如2与表面上看是不相同的,但它们可以合并吗?可以的 (板书)3+=3+2=5 3+=3+3=6 所以,二次根式加减时,可以先将二次根式化成最简二次根式,再将被开方数相同的二次根式进行合并 例1计算 (1)+ (2)+ 分析:第一步,将不是最简二次根式的项化为最
3、简二次根式;第二步,将相同的最简二次根式进行合并 解:(1)+=2+3=(2+3)=5 (2)+=4+8=(4+8)=12 例2计算 (1)3-9+3 (2)(+)+(-) 解:(1)3-9+3=12-3+6=(12-3+6)=15 (2)(+)+(-)=+- =4+2+2-=6+ 三、巩固练习 教材P19 练习1、2 四、应用拓展 例3已知4x2+y2-4x-6y+10=0,求(+y2)-(x2-5x)的值 分析:本题首先将已知等式进行变形,把它配成完全平方式,得(2x-1)2+(y-3)2=0,即x=,y=3其次,根据二次根式的加减运算,先把各项化成最简二次根式,再合并同类二次根式,最后代
4、入求值 解:4x2+y2-4x-6y+10=0 4x2-4x+1+y2-6y+9=0 (2x-1)2+(y-3)2=0 x=,y=3 原式=+y2-x2+5x =2x+-x+5 =x+6 当x=,y=3时, 原式=+6=+3 五、归纳小结 本节课应掌握:(1)不是最简二次根式的,应化成最简二次根式;(2)相同的最简二次根式进行合并 六、布置作业 1教材P21 习题213 1、2、3、52选作课时作业设计 第一课时作业设计 一、选择题 1以下二次根式:;中,与是同类二次根式的是( ) A和 B和 C和 D和 2下列各式:3+3=6;=1;+=2;=2,其中错误的有( ) A3个 B2个 C1个 D0个 二、填空题 1在、3、-2中,与是同类二次根式的有_ 2计算二次根式5-3-7+9的最后结果是_ 三、综合提高题 1已知2.236,求(-)-(+)的值(结果精确到0.01) 2先化简,再求值 (6x+)-(4x+),其中x=,y=27答案: 一、1C 2A 二、1 26-2 三、1原式=4-=2.2360.452原式=6+3-(4+6)=(6+3-4-6)=-,当x=,y=27时,原式=-=-