1、5.6三角形的中位线【教学目标】1、了解三角形的中位线的概念2、了解三角形的中位线的性质 3、探索三角形的中位线的性质的一些简单的应用【教学重点、难点】重点:三角形的中位线定理难点:三角形的中位线定理的证明中添加辅助线的思想方法。【教学过程】(一)创设情景,引入新课1、如图,为了测量一个池塘的宽BC,在池塘一侧的平地上选一点A,再分别找出线段AB、AC的中点D、E,若测出DE的长,就可以求出池塘的宽BC,你知道这是为什么吗?2、动手操作:剪一刀,将一张三角形纸片剪成一张三角形纸片和一张梯形纸片(1)如果要求剪得的两张纸片能拼成平行的四边形,剪痕的位置有什么要求?(2)要把所剪得的两个图形拼成一
2、个平行四边形,可将其中的三角形做怎样的图形变换?3、引导学生概括出中位线的概念。问题:(1)三角形有几条中位线?(2)三角形的中位线与中线有什么区别?启发学生得出:三角形的中位线的两端点都是三角形边的中点,而三角形中线只有一个端点是边中点,另一端点上三角形的一个顶点。4、猜想:DE与BC的关系?(位置关系与数量关系)(二)、师生互动,探究新知1、证明你的猜想引导学生写出已知,求证,并启发分析。(已知:ABC中,D、E分别是AB、AC的中点,求证:DEBC,DE=1/2BC)启发1:证明直线平行的方法有哪些?(由角的相等或互补得出平行,由平行四边形得出平行等)启发2:证明线段的倍分的方法有哪些?
3、(截长或补短)学生分小组讨论,教师巡回指导,经过分析后,师生共同完成推理过程,板书证明过程,强调有其他证法。证明:如图,以点E为旋转中心,把ADE绕点E,按顺时针方向旋转180,得到CFE,则D,E,F同在一直线上,DE=EF,且ADECFE。ADE=F,AD=CF,ABCF。又BD=AD=CF,四边形BCFD是平行四边形(一组对边平行且相等的四边形是平行四边形),DFBC(根据什么?),DE 1/2BC2、启发学生归纳定理,并用文字语言表达:三角形中位线平行于第三边且等于第三边的一半。(三)学以致用、落实新知1、练一练:已知三角形边长分别为6、8、10,顺次连结各边中点所得的三角形周长是多少
4、?2、想一想:如果ABC的三边长分别为a、b、c,AB、BC、AC各边中点分别为D、E、F,则DEF的周长是多少?3、例题:已知:如图,在四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA的中点。 求证:四边形EFGH是平行四边形。启发1:由E,F分别是AB,BC的中点,你会联想到什么图形?启发2:要使EF成为三角的中位线,应如何添加辅助线?应用三角形的中位线定理,能得到什么?你能得出EFGH吗?为什么?证明:如图,连接AC。 EF是ABC的中位线, EF 1/2AC(三角形的中位线平行于第三边,并且等于第三边的一半)。 同理,HG 1/2AC。EF HG。四边形EFGH是平行四边形(一组对边平行并且相等的四边形是平行四边形)挑战:顺次连结上题中,所得到的四边形EFGH四边中点得到一个四边形,继续作下去。你能得出什么结论?AMNDPBCC(四)学生练习,巩固新知1、请回答引例中的问题(1)2、如图,在四边形ABCD中,AB=CD,M,N,P分别是AD,BC, BD的中点。求证:PNM=PMN(五)小结回顾,反思提高今天你学到了什么?还有什么困惑?(六)分层作业