1、绝对值一、教学目标1 .理解绝对值的概念与几何意义;2 .会求一个数的绝对值(不涉及字母)及绝对值等于某一正数的有理数;3 .探索绝对值的简单应用。二、教学重点和难点重点:正确理解绝对值的概念难点:绝对值的实际意义是什么?为什么它是正数或零?这些问题学生不好理解,因此,绝对值的概念也是难点。三、教学手段现代课堂教学手段四、教学方法启发式教学五、教学过程(一)从学生原有的认知结构提出问题1、下列各数中:+7,-2,-8.3,0,+0.01,-,1,哪些是正数?哪些是负数?哪些是非负数?2、什么叫做数轴?画一条数轴,并在数轴上标出下列各数:-3,4,0,3,-1.5,-4,23、问题2中有哪些数互
2、为相反数?从数轴上看,互为相反数的一对有理数有什么特点?4、怎样表示一个数的相反数?(二)师生共同研究形成绝对值概念例1 两辆汽车,第一辆沿公路向东行驶了5千米,第二辆向西行驶了4千米,为了表示行驶的方向(规定向东为正)和所在位置,分别记作+5千米和-4千米。这样,利用有理数就可以明确表示每辆汽车在公路上的位置了。我们知道,出租汽车是计程收费的,这时我们只需要考虑汽车行驶的距离,不需要考虑方向。当不考虑方向时,两辆汽车行驶的距离就可以记为5千米和4千米(在图上标出距离)这里的5叫做+5的绝对值,4叫做-4的绝对值。例2 两位徒工分别用卷尺测量一段1米长的钢管,由于测量工具使用不当或读数不准确,
3、甲测得的结果是1.01米,乙侧得的结果是0.98米,甲测量的差额即多出的数记作+0.01米,乙测量的差额即减少的数记作-0.02米。如果不计测量结果是多出或减少,只考虑测量误差,那么他们测量的误差分别是0.01和0.02,这里所说的测量误差也就是测量结果所多出来或减少了的数+0.01和-0.02绝对值。如果请有经验的老师傅进行测量,结果恰好是1米,我们用有理数来表示测量的误差,这个数就是0(也可以记作+0或-0),自然这个差额0的绝以值是0现在我们撇开例题的实际意义来研究有理数的绝对值,那么,+5的绝对值是5,在数轴上表示+5的点到原点的距离是5;-4的绝对值是4,在数轴上表示-4的点到原点的
4、距离是4;+0.01的绝对值是0.01,在数轴上表示+0.01的点到原点的距离是0.01;-0.02的绝对值是0.02,在数轴上表示-0.02的点它到原点的距离是0.02;0的绝对值是0,表明它到原点的距离是0一般地,一个数a的绝对值就是数轴上表示a的点到原点的距离为了方便,我们用一种符号来表示一个数的绝对值,约定在一个数的两旁各画一条竖线来表示这个数的绝对值。如+5的绝对值记作+5,显然有+5=5;-0.02的绝对值记作-0.02,显然有-0.02=0.02;0的绝对值记作0,也就是0=0a的绝对值记作a,(提醒学生a可以是正数,也可以是负数或0)求下列各数的绝对值:-1.6,0,-10,+
5、10.由例3学生自己归纳出:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0这也是绝对值的代数定义,把绝对值的代数定义用数学符号语言如何表达?把文字叙述语言变换成数学符号语言,这是一个比较困难的问题,教师应帮助学生完成这一步1、用a表示一个数,如何表示a是正数,a是负数,a是0?由有理数大小比较可以知道:a是正数:a0;a是负数:a0;a是0:a=02、怎样表示a的本身,a的相反数?a的本身是自然数还是a,a的相反数为-a.现在可以把绝对值的代数定义表示成 如果a0,那么=a;如果a0,那么=-a;如果a=0,那么=0由绝对值的代数定义,我们可以很方便地求已知数的绝对值了
6、练习: 求8,-8,-,0,6,-,-5的绝对值例4 求绝对值等于4的数。分析:因为数轴到原点的距离等于4个单位长度的点有两个,即表示+4的点和表示-4的点,所以绝对值等于4的数是+4和-4。(三)课堂练习1、下列哪些数是正数?-2,-,-(-2),-2、计算下列各题:|-3|+|+5|;|-3|+|-5|;|+2|-|-2|;|-3|-|-2|;|-|-|;|-|-2|;|-|。(四)小结指导学生阅读教材,进一步理解绝对值的代数和几何意义六、练习设计1、填空:(1)+3的符号是_,绝对值是_;(2)-3的符号是_,绝对值是_;(3)-的符号是_,绝对值是_;(4)10-5的符号是_,绝对值是_2、填空:(1)符号是+号,绝对值是7的数是_;(2)符号是-号,绝对值是7的数是_;(3)符号是-号,绝对值是035的数是_;(4)符号是+号,绝对值是1的数是_;3、(1)绝对值是的数有几个?各是什么?(2)绝对值是0的数有几个?各是什么?(3)有没有绝对值是-2的数?4、计算:(1)|-15|-|-6|; (2)|-0.24|+|-5.06|; (3)|-3|-2|;(4)|+4|-5|; (3)|-12|+2|; (6)|20|-|